A Road to Efficiency Through
Communication and Commitment

Ala Avoyan† and João Ramos ‡

February 18, 2017

Abstract

We examine the efficiency gains of introducing a pre-play phase—allowing agents
to communicate their intentions and commit to them—in a game with Pareto ranked
equilibria. We focus on a game in which a Pareto inferior equilibrium is usually cho-
sen. We first derive the theoretical conditions under which the efficient equilibrium
is unique in the extended game and then we test our theory in the lab. The introd-
uction of the pre-play revision phase increases the coordination on the Pareto dominant
equilibrium, restoring over 50% of the efficiency lost in the standard setting. The re-
results shed new light on cheap talk and reveal that a combination of communication
and commitment leads to significantly higher welfare.

JEL Classification: C73, C92, P41; Keywords: coordination games, revision games,
continuous monitoring.

*We thank Andrew Schotter for his invaluable support and input to this project. We would also like to
thank Andreas Blume, David Cesarini, Yan Chen, Guillaume Fréchette, Boyan Jovanovic, Chad Kendall,
Debaj Ray, Séverine Toussaert, Roberto Weber, Lukiel Levy-Moore and Keith O’Hara for their helpful
comments. This paper also benefited from comments by seminar and conference participants of NRET at
NYU, the 27th International Conference on Game Theory and the 2016 ESA North American Meetings.
We gratefully acknowledge financial support from the Center for Experimental Social Science at New York
University (CESS).
†Department of Economics, New York University. E-mail: a.avoyan@nyu.edu
‡Department of Finance and Business Economics, University of Southern California. E-mail: Joao.Ramos@marshall.usc.edu
1 Introduction

Economic situations requiring people to coordinate their actions are pervasive in society. For instance, firms have to make investment decisions, and their returns depend on the amount invested by other firms; thus, coordination failure may limit economic activity with firms that choose suboptimal investment levels (see, for instance, Rosenstein-Rodan (1943)). A common feature of coordination games is the existence of multiple Pareto ranked equilibria. It is crucial for players not only to coordinate on a common action profile, but also to coordinate on the best action profile.

The literature has devoted considerable attention to the efficiency loss in coordination games that results from miscoordination or from coordination on a suboptimal equilibrium. Experimental evidence highlights that the efficiency loss resulting from miscoordination pales in comparison to the loss resulting from coordinating on a suboptimal equilibrium.\(^1\) Recent research has focused on how different institutions can lead to the coordination on a better equilibrium, and a key point has been the introduction of communication among players. On the one hand, some experimental evidence suggests that communication may improve efficiency by increasing coordination on the optimal action profile. On the other hand, there are cases in which communication has no significant effect.\(^2\) However, given that the introduction of communication does not always impact the set of equilibria, it is not clear how or why it would help players coordinate on the Pareto efficient equilibrium.

Calcagno et al. (2014)\(^3\) propose a different communication protocol, and show theoretically that it selects the payoff-dominant equilibrium as the unique equilibrium of a coord-

\(^1\)See Cooper (1999), Devetag and Ortmann (2007) for a review on coordination games, with both theoretical and experimental evidence.

\(^2\)There are some communication protocols, such as one-way communication or public announcements, that have been documented to increase coordination. However, other protocols, such as two-way communication or private advice, have led to coordination failures (see Cooper et al. (1992), Chaudhuri et al. (2009), Charness (2000), Blume and Ortmann (2007), Burton and Sefton (2004) and Feltovich and Grossman (2014)).

\(^3\)See Kamada and Kandori (2009), where the authors first introduce and define revision games.
nation game. The protocol consists of an asynchronous revision pre-play phase in which a player can change her chosen action at random times, and only the strategy chosen in the last instant is payoff-relevant. In contrast to focal point or cheap talk, the introduction of a pre-play phase directly affects the set of equilibria, and the Pareto dominant equilibrium of the coordination game becomes the unique equilibrium.

In this paper, we experimentally investigate the efficacy of the introduction of an asynchronous revision pre-play communication protocol in improving payoffs in coordination games. We embed a revision mechanism into a minimum-effort game, in which players can observe the actions of all their group members in real time (we call the treatment without a pre-play phase baseline, and with a pre-play phase revision mechanism). The pre-play phase starts with all group members choosing an initial action, which, if an opportunity arises, they can revise during a preparation period of sixty seconds. Revision opportunities are awarded randomly to each group member according to independent probability distributions (probability of two group members receiving a revision opportunity in the same instant is zero—hence, revisions are asynchronous). In one graph changing over time, each player can see real-time information on all group members’ revision opportunities, posted action and the history of posted actions and revisions. At the end of the pre-play phase, the actions most recently revised are played out; thus, as the deadline approaches, players become more committed to their choices. In standard cheap talk protocols, sent messages have no binding effect on taken actions, while in the revision mechanism setup, the message may become the final choice with some strictly positive probability. Consequently, unlike cheap talk, messages in the pre-play phase directly impact final choices and thus, payoffs.

We show that, as the theory predicts, the introduction of the revision mechanism increases coordination on the Pareto best equilibrium. Actions chosen in the treatment with

\footnote{Focal point is one particular equilibrium that players will tend to play, given that it seems natural, or special, to them (see Schelling (1980)), while cheap talk is the capacity of players to communicate in a non-binding way (see Farrell (1995), Farrell and Rabin (1996) and Crawford (1998)).}
the pre-play phase are significantly higher than in the treatment without the pre-play phase. Furthermore, our results suggest that miscoordination in the revision mechanism treatment is essentially nonexistent, as variation in the chosen action decreases over periods and is virtually absent towards the end. As for efficiency, we calculate the loss by comparing average payoffs earned by our subjects in both treatments, compared to the maximum payoff. In every period, subjects earn significantly more in the treatment with the pre-play phase than without it. Moreover, the revision opportunity treatment is able to restore more than half of the welfare lost in the baseline.

The introduction of an asynchronous revision pre-play phase to the game increases the coordination on the efficient equilibrium profile. To further understand why this protocol improves coordination, we examine the forces behind our main treatment. The revision mechanism combines two components: (i) communication and (ii) commitment. During the pre-play phase, players publicly communicate their intended actions, and can change them when a revision opportunity occurs. The action chosen at the end of the countdown is the action played. Thus, as the deadline approaches, players effectively commit to their chosen action. To separate the importance of both components, we run an additional treatment, cheap talk, in which the pre-play revision mechanism is non-binding. Such treatment is identical to the revision mechanism, except that the action chosen at the end of the countdown is payoff-irrelevant. When the countdown ends, agents are asked to choose a strategy to be played and are paid based only on that choice. Our results reveal the importance of both communication and commitment for better coordination, as the payoffs are significantly higher in the revision mechanism than in the cheap talk treatment.

The experimental procedure in this paper allows us to study not only the final outcomes of players’ interactions, but also the process and the strategies that lead to them. By collecting data on how players revise their strategies during the countdown, we can test for the presence of forward induction (Kohlberg and Mertens (1986)). We find that almost
half of the initial revisions and a quarter of all revisions are forward thinking—players revise their strategies in a way that would lower their payoffs if no other revision occurred subsequently. The difference between the initial and overall revisions suggests that the communication embedded in the forward thinking revisions plays a more important role at the beginning of the players’ interaction, when there is more strategic uncertainty.

The revision mechanism presented and tested in this paper can be interpreted in two distinct ways. First, it can be understood as a dynamic coordination game in which agents have to prepare their actions and cannot change these preparations instantaneously. Second, one can interpret this extended game—including the revision opportunities—as a mechanism to implement the efficient outcome.

Following the first interpretation, the revision mechanism could be a more realistic depiction of real-world coordination settings: before taking an action, players have to prepare it. For instance, consider firms investing in a joint project. It is natural to think that the investment is more profitable for a firm when the other firm’s investments are higher. Also, even though there is a deadline for the investments to be made, firms communicate and plan their investments for a long time. While firms make preparations, they often cannot change them in an instant or, sometimes, cannot alter them at all due to administrative procedures and obligations to other projects, among other reasons. Thus, adjustments can be made only if an opportunity arises.

A distinct interpretation for the pre-play phase is the mechanism design approach: the revision mechanism is not already in place; rather, a central planner can introduce such a mechanism to improve efficiency. Our result on the significant increase of coordination in the Pareto efficient equilibrium suggests a policy that might be implemented to reduce inefficiency in coordination settings. The inability to coordinate investments could significantly constrain economic development (see, for example, Murphy et al. (1988)), and implementing the revision mechanism could increase the coordination on a higher

See Cachon and Camerer (1996) for experimental evidence on forward induction, and more recent work Evdokimov and Rustichini (2016) and Balkenborg and Nagel (2016).
investment equilibrium, thus raising welfare. Our paper shows that implementing the
revision mechanism leads to higher efficiency than simply letting players communicate
before taking an action, as in cheap talk.

The rest of the paper is organized as follows. Section 2 presents an overview of the lit-
erature. In Section 3, we introduce the model and the main theoretical result: the unique-
ness of the Pareto dominant equilibrium in the game that includes a pre-play phase. Sec-
section 4 states our implementation of the theory — the experimental design. In Section 5,
we report our results, and discuss how players coordinate their actions, as well as the
importance of revisions for coordination. Section 6 concludes the paper.

2 Literature Review

Consider the following minimum-effort game: a group of workers have to simultane-
ously decide how much effort to exert on a joint project. Each worker’s payoff depends
negatively on her effort choice and positively on the minimum effort exerted by her group
members. The rate of return on the group’s minimum effort more than compensates for
individual investment costs. However, since exerting effort is costly, a player would never
like to invest more than the minimum effort chosen by the group members. Therefore,
as long as all the group members choose the same effort, no player has any incentives to
change her effort choice. The minimum-effort game exhibits multiplicity of equilibria, as
there are as many equilibria as there are possible effort choices. Furthermore, all equilib-
ria can be Pareto ranked, with a higher effort one dominating any equilibrium with lower
effort.

Van Huyck et al. (1990) were the first to study the minimum-effort game in an experi-
mental setting, in which subjects played the game multiple times and, after every round,
were informed about the minimum effort chosen in their group. The choice of effort pre-
sented a clear pattern, declining as rounds progressed and converging to the minimum

6 They consider a game in which players choose an effort in the set \(E = \{1, 2, 3, 4, 5, 6, 7\} \), and with payoff
function \(\pi_i(e) = 0.6 - 0.1e_i + 0.2 \min_j \{e_j\} \). Such a stage game was repeated ten times.
The convergence to the Pareto-worst equilibrium led to the rise of a literature that tries to examine the robustness of this result in various settings. Treatments range from introducing continuous choices of efforts to group bonding activities preceding the actual game. More aligned with our work are treatments that focus on monitoring group members’ choices or the communication of their actions to each other. Some treatments proposed in the literature have proven successful in facilitating a higher frequency of coordination on the Pareto dominant equilibrium. In this paper, we provide a theory-based treatment, highlighting the importance of communication and commitment in fostering cooperation towards the payoff-dominant equilibrium.

The impact of different monitoring structures on equilibria selection in coordination games has been a matter of contention in the literature. Van Huyck et al. (1990) and Devetag (2005) find that better ex-post monitoring devices fail to facilitate coordination on the payoff-dominant equilibrium, while Berninghaus and Ehrhart (2001) and Brandts and Cooper (2006) find a positive relationship between ex-post monitoring and coordination on the payoff dominant action profile. In our paper, we introduce an asynchronous revision pre-play communication phase and show, both theoretically and experimentally, its positive effect on coordination. A similar extension that has been studied in a minimum-game experimental setting is the introduction of a pre-play communication device. Such communication can be costly or costless or take the form of intergenerational advice.

Van Huyck et al. (1993) and Devetag (2005) consider a costly form of pre-play communication (a pre-play auction each round) and conclude that such an extension enables the players to achieve coordination on the payoff dominant profile. This experimental result is theoretically explained by Crawford and Broseta (1998).

7 This suggests a pattern of risk-dominance selection. For instance, see Carlsson and Van Damme (1993) and Cabrales et al. (2007) for theoretical and experimental evidence.
8 See Goeree and Holt (2005), Chen and Chen (2011), Bornstein et al. (2002), Weber (2006), and Berninghaus and Ehrhart (1998) for how different treatments—from gradually growing group sizes to inter-group competition—affect coordination.
More aligned with our work, Blume and Ortmann (2007) examine the introduction of simultaneous costless pre-play communication. Prior to each stage game, players sent a message (a number between 1 and 7) indicating how much effort they intended to exert. After observing the messages from all the group members, players had to choose the payoff-relevant effort level. In contrast with our main treatment, the messages were cheap talk - not binding in any way. The main result of the paper is that the pre-play cheap talk communication increases coordination on the dominant equilibrium. Note that, since messages are non-binding, there is no theoretical argument for why cheap talk communication should impact the set of equilibria. In comparison, the revision mechanism treatment of our paper introduces messages that become payoff-relevant actions, and this commitment directly impacts the set of equilibria. Moreover, introducing the revision mechanism reduces the set of equilibria to a singleton containing only the Pareto efficient action profile. This paper sheds new light on the result in Blume and Ortmann (2007), since we can test the difference between the revision mechanism with and without commitment. Our results suggest that both communication and commitment are important in promoting coordination on Pareto best equilibrium.

Finally, Chaudhuri et al. (2009) introduce intergenerational advice as a coordination device. The game is played by non-overlapping generations of players, who can pass on advice to their successors in the game. The paper analyzes different levels of common knowledge of the advice, and “high quality” public announcements are shown to induce greater levels of coordination on payoff-dominant equilibrium. However, if advice is not sufficiently strong, the coordination is very sensitive to the manner of announcement distribution.

The paper by Deck and Nikiforakis (2012) is the first to study interim real-time monitoring in a minimum-effort game. Players have exactly one minute to choose an action, and—in contrast to our paper—can switch the chosen action at any time. Depending on

Footnotes:

9 Real-time monitoring and revisions in a voluntary contributions game was first discussed in Dorsey (1992).
the monitoring structure, a player’s movements might be observed by all players or by only a subset of them. The effort choice at the end of the period is used to determine payoffs. The authors examine various interim monitoring structures, and although there is no difference in the equilibrium set implied by each one of them, they conclude that—only if all players observe everybody’s action choices—perfect monitoring increases the coordination on the payoff-dominant equilibrium. Similarly, in [Leng et al. (2016)], where subjects play a minimum-effort game in continuous time with the payoffs determined at each instant, perfect monitoring also increases coordination.

The results of our paper suggest that there is more to be done to increase coordination on payoff-dominant equilibrium. By comparing the cheap talk and the revision mechanism treatments, we show that not only communication, but also commitment, plays a crucial role in increasing efficiency.

3 The Model

Consider the following normal-form game \((I, (E_i)_{i \in I}, (\pi_i)_{i \in I}))\) in continuous time \(-t \in [-T, 0]\), where \(I\) is a set of players, \(E_i\) a set of effort levels and \(\pi_i(e) = \gamma + \alpha \cdot \min_{j \in I} e_j - \beta \cdot e_i\) is a payoff function for player \(i\), with \(\alpha > \beta > 0\). The normal-form game is played once and for all at time \(t = 0\). At \(-T\), players simultaneously choose an initial action and post it. Between \(-T\) and 0, players independently obtain revision opportunities, according to a Poisson process with arrival rate \(\lambda_i > 0\), at which point they can change their previously chosen action. At \(t = 0\), the posted action is taken, and each player receives the payoff that corresponds to it.

Note that a one-shot component of the game described above—i.e., the minimum-effort game—has multiple equilibria. As long as all players play the same pure strategy, it is a Nash equilibrium. However, under certain conditions, all of the dynamic revision minimum-effort game equilibria result in the same payoff and last instant actions of the Pareto efficient equilibrium of the one-shot game.
A public history is a sequence of posted actions and the history of revision opportunities for each group member, \(\mathcal{H}_t = \{ (e_{\tau}, r_{\tau}) \}_{\tau \in [-T,t)} \), where \(e_{\tau} = (e_{1\tau}, ..., e_{|I|\tau}) \), \(e_{i\tau} \in E_i \) and \(r_{\tau} = (r^{1\tau}, ..., r^{|I|\tau}) \), \(r^i_{\tau} \in \{0, 1\} \). Let \(\mathcal{H} := \bigcup_{t \in [-T,0]} \mathcal{H}_t \) be the set of all possible public histories. A history for player \(i \) at time \(t \) is \(h_i(t) = \{ (e_{\tau}, r_{\tau}) \}_{\tau \in [-T,t)} \in \mathcal{H}_t \). A strategy for player \(i \) is a mapping \(\sigma_i : \mathcal{H} \to \Delta(E_i) \).

We apply Theorem A.2 from Calcagno et al. (2014) to a minimum-effort game video supra and summarize the statement in the following Proposition.

Proposition 1 In an Asynchronous Revision Minimum-Effort Game, if

1. \(\alpha > (n - 1)\beta \) (the return on group effort is sufficiently higher than the cost), and
2. \(r_i = 1/n, \forall i \in I \) (revision opportunities are equally distributed amongst all players),

then there exists \(T' > 0 \) such that for all \(T > T' \), the unique revision equilibrium (SPE) has \(e_0 = \max E_i \) with probability 1.

The proof of Proposition 1 uses Theorem A.2 from Calcagno et al. (2014) and it is in Appendix [A]. We will discuss the main idea of the original proof as it is very intuitive and it appeals to some relevant ideas discussed in this paper. First, note that if all players choose the maximum effort in a given instant, there is no reason for any player to ever deviate from it. Thus, one equilibrium of the dynamic game is all players choosing the maximum effort from the beginning. Let us now provide intuition for why it is the unique one. Assume that, in a given instant far removed from the deadline, all players but one choose the maximum effort (only one player chooses a different effort). That particular player has the incentive to change her effort choice to the maximum effort since, if she does so, her payoff will increase to the maximum possible payoff. If there is enough time before the deadline and revision opportunities are quite common, it is beneficial for the other players to continue choosing the maximal effort, waiting for that particular player to have a revision opportunity. Now, assume that, in a given instant, all players but two
choose the maximum effort. If one of the players that does not choose the maximum effort receives a revision opportunity, she should revise her effort to the maximum effort since she will induce the other player to follow in her footsteps, as described above. That is, she will revise her action because she knows that this will lead the other player to revise his. If revision opportunities are frequent enough for all players, the argument above unravels all other equilibrium candidates, as one player changing her effort choice begins a chain of events that leads all players to choose the highest effort level. In our experiment we find that almost half of the initial revisions resemble the idea described above, that is, half of all initial revisions follow the forward thinking reasoning which is at the core of the proof.

We proceed by describing how we design an experiment to closely replicate the conditions of our setup and to test the power of the pre-play revision mechanism in aiding coordination. First, we need to acknowledge the key challenges and our proposed resolutions. The game is set in continuous time, and players need to have perfect information in continuous time. Every players’ revision opportunity and posted action, as well as the history of posted actions and revisions, should be available to all players at all times. To compile all of this information and make it easily understandable to our subjects, we create a graph that summarizes all the key points. The players’ actions are represented by different colors. Every time a player receives a revision opportunity, a dot shows up on that player’s action line. This graph summarizes all the key information and makes it easily accessible to the subjects. A more detailed explanation of our graph and of the entire experiment is given in the next section.

[10] See Friedman and Oprea (2012) and Bigoni et al. (2015) for recent studies implementing continuous time in the lab. We would like to thank Bigoni et al. (2015) and Friedman and Oprea (2012) for sharing their code with us.
4 Experimental Design

The experimental sessions were conducted at the Center for Experimental Social Science (CESS) laboratory at New York University (NYU), using the software z-Tree (Fischbacher 2007). All participants were NYU students. The experiment lasted about 45 minutes and, on average, subjects earned $17 that included $8 dollar show up fee. The experiment consisted of three different treatments run with different subjects. In each session, written instructions were distributed to the subjects and also read aloud.

Participants were randomly divided in groups of six, and they made a sequence of ten decisions as a part of that group. Each group played the minimum-effort game with effort levels ranging from 1 to 7 and the payoff function: $\pi_i(e) = .18 - .04 \cdot e_i + .2 \cdot \min_{j \in I} e_j$.

The payoffs were described to subjects in matrix form, and the subjects then took a short comprehension test to ensure that they understood the payoff structure. After ten periods, subjects took a short survey and were paid their final payoff, which was the sum of the payoffs from all ten periods and the show-up fee (survey results are summarized in Appendix H).

In each of the three treatments, the instructions and the information available to the players were different. Let us describe the rules of each treatment one at a time.

4.1 Treatment 1: Baseline

After each period of playing a standard one-shot, minimum-effort game, participants received a feedback on the minimum number chosen in their group in that period. This was the only history available to the subjects in the baseline treatment (as in Van Huyck et al. (1990)).

Instructions used in our experiment can be found in the Appendix I, J and K.

This payoff function is consistent with conditions in Proposition 1.
4.2 Treatment 2: Revision Mechanism

Every member of the group chose an integer from 1 to 7. Once all the group members had made their choices, the graph appeared, as in Figure 1 and a one-minute countdown began. In Figure 1, the time in seconds is on the horizontal axis and the number chosen by each of the group members is the vertical axis. The initially picked numbers are placed along the vertical line above the zero second mark. Each player is represented in the graph with a different color.

As the countdown progressed, every member of the group could change the number chosen at any time by placing the cursor on the desired number on the left side of the screen. When a subject had selected a number, the respective button would turn green, as the number 4 is in Figure 1. The number posted on the graph would only get updated if a revision opportunity was awarded to a player and, who selected a number different from her previous choice.

Revision Opportunities: Every second, the group had an 80% chance of receiving a revision opportunity. When a revision opportunity was awarded to the group the six group members had then equal probability of 1/6 of receiving the revision. The chance of any member of the group having a revision opportunity at any second was, thus, equal to approximately 13\%.

Only the numbers posted at the end of the countdown mattered for the payoff. The numbers initially picked and all the revisions were payoff irrelevant.

Let us take a closer look at player Green’s actions (thicker line on the graph), whose screen is shown in Figure 1. Along the vertical line above the zero-second mark, we see a green dot in the interval 2, which means that Green’s initial choice was action 2. A dot on the green line (thicker line) at the five-second mark means that Green was awarded

\[\text{We explained the graph in greater detail in the instructions, and all subjects took a short comprehension test regarding the graph.}\]

\[\text{The theoretical result in Proposition 1 requires the revision opportunities to be frequent enough or the length of a period to be long enough (these two parameters are interchangeable). In Appendix D we test whether chosen } T \text{ and } \lambda \text{ in the experiment are robust and we conclude that our choice wasn’t binding.}\]
a revision opportunity as the action after that was not updated, Green did not change the intended action, still choosing 2. At 15-second mark, we see a shift of the green line from the action 2 interval to the action 6 interval. This implies that in the 15th second, the revision opportunity was awarded to Green, and prior to that, she had switched her action from 2 to 6. And at about 25-second mark, there is a green dot on the line, revealing that a revision opportunity was awarded but not used, as the green line is still in interval 6.

On the 30-second mark, one can observe each group member’s current posted action. Players Green and Blue are at action 6; Purple is at 5; Light Blue and Orange are at 3 and Yellow is at 1. Thus, the current minimum action is 1. Note that on the left side of the graph in Figure 1, the number 4 is green. This implies that the player whose screen we are observing has switched her intended action from 6 to 4. However, the revision opportunity has not yet occurred; thus, the posted action on the graph is still action 6. At every second, we collect data on each player’s intended action and posted action.
4.3 Treatment 3: Cheap Talk

The revision mechanism treatment combines two main forces to promote cooperation. First, it allows agents to communicate their intended actions to each other publicly. Second, it provides a partial commitment to the actions communicated. To separate these two forces, we run a cheap talk treatment. Treatment 3 follows the Treatment 2 protocol, without commitment—i.e., the one-minute countdown is payoff-irrelevant. Once 60 seconds are up, a new screen appears and subjects choose an integer from 1 to 7, as in the baseline treatment, and get paid accordingly.

Table 1 summarizes our experiment treatments and the number of sessions and subjects.

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Sessions</th>
<th>Task</th>
<th>No. of Subjects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treatment 1</td>
<td>1-2</td>
<td>Baseline</td>
<td>36</td>
</tr>
<tr>
<td>Treatment 2</td>
<td>3-5</td>
<td>Revision Mechanism (RM)</td>
<td>36</td>
</tr>
<tr>
<td>Treatment 3</td>
<td>6-8</td>
<td>Cheap Talk (CT)</td>
<td>36</td>
</tr>
</tbody>
</table>

5 Results

In this section, we present our experimental results and shed light on the effects of the introduction of the revision mechanism. We begin by analyzing our data using a simple table that shows the minimum effort choice by every group in the last period of both baseline and revision mechanism treatments. As we see from Table 2, two treatments result in very different outcomes: group minimum effort for five out of six groups is either 6 or 7 (the maximum possible effort level is 7) for the revision mechanism treatment, while no group in baseline treatment coordinated on an effort level higher than 5.

[Note: One session of the baseline treatment was voided as one of the subjects publicly announced his intended action, and asked others to play the same.]
Table 2: Last Period Minimums in Descending Order

<table>
<thead>
<tr>
<th></th>
<th>7</th>
<th>7</th>
<th>6</th>
<th>6</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Revision Mechanism (RM)</td>
<td>5</td>
<td>5</td>
<td>3</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Table 2 suggests a significant difference between the equilibrium played in the revision mechanism and in the baseline treatment. We proceed by first documenting the statistical difference suggested in Table 2. Then, we analyze the dynamics of players’ actions leading to that statistical significance. All of the tests reach similar conclusions: the introduction of the revision mechanism significantly increases the coordination on the payoff-dominant equilibrium, leading to higher payoffs.

First, we focus on the efficiency loss, comparing the revision mechanism and the baseline treatments. Deviations from the efficient equilibrium—all players choosing the Pareto optimal equilibrium profile—reduce efficiency in two distinct ways: first, through miscoordination from the minimum effort, as some players do not respond optimally to other players’ efforts; and second, through the inefficient minimum effort chosen, which affects all players’ payoffs. The payoff function combines both forces and, thus, is a good measure of efficiency. Figure 2a presents the average payoff over periods for the two treatments. In every period, subjects earn more in the revision mechanism than in the baseline treatment and as periods proceed, we see the revision mechanism treatment leading to higher payoffs, while the average payoff in the baseline treatment stays essentially the same. The Figure 2a shows a clear divergence in average payoffs, but the difference between subjects’ earnings in these two treatments is even stronger—the payoff distribution in the revision mechanism first-order stochastically dominates the distribution in the baseline treatment and a Kolmogorov-Smirnov (K-S) test of equal distributions is rejected at $p < 0.01$.

We calculate total earnings in both treatments and compare it to the highest possible payoff. Subjects’ revision mechanism total payoff is 77.8% of the efficient payoff, while
the baseline treatment is only 53.3%. Thus, the introduction of the revision mechanism is able to restore more than half (52.4%) of the efficiency lost in the baseline treatment.

(a) Average Payoff

(b) Average Minimum Action

(c) Frequency of Highest Effort

(d) Average Standard Deviation

Figure 2: Baseline vs Revision Mechanism Treatment

The increase in payoffs in the main treatment is driven by two distinct effects: (i) the increase in coordination in a particular equilibrium; and (ii) the increase in coordination in the payoff-dominant equilibrium. To separate these two effects, we compare actions chosen in the baseline and the revision mechanism treatments, and we begin by analyzing the average minimum efforts, see Figure 2b. The average minimum effort chosen in the revision mechanism is significantly higher than in the baseline treatment (the hypothesis of equal minimum effort distributions is rejected using a Mann-Whitney U (MWU) test, at the 1 percent level). Furthermore, note that minimum actions in the revision mechanism

\[\text{Group level data can be found in Appendix C and aggregate data by second is in Appendix B}\]
treatment are increasing over periods, as opposed to the steady average in the baseline treatment.

Next, we examine the frequency of the efficient action over the periods. Figure 2c summarizes our results. Both the revision mechanism and the baseline treatments start the first period at the same frequency of maximum effort (around 70%). However, the frequency with which the Pareto optimal equilibrium effort is chosen in the baseline treatment decreases rapidly over time, while the revision mechanism frequency stays virtually the same. The difference between the treatments increases over time, and in the last period, players in the revision mechanism play the efficient action almost five times more often than players in the baseline treatment.

Finally, we test the null hypothesis of equal distributions of effort choices in both treatments in all periods combined and separately for each period. A Komogorov-Smirnov test rejects the hypothesis with \(p < 0.01 \) for all periods pooled together and also, for separate periods after Period 4.

Our central result is that the introduction of a pre-play phase, in which agents can revise their chosen actions—i.e., the revision mechanism—reduces the efficiency loss observed in the baseline treatment. This implies that agents have significantly higher payoffs in the revision mechanism than in the baseline treatment. An important part of the payoff difference can be attributed to the fact that agents play higher effort strategies in the former than in the latter. The introduction of the revision mechanism improves the coordination on a higher effort and also fosters a steady minimum action, unlike the rapid declining pattern observed in the literature.

We now proceed to establish that the revision mechanism treatment provides more coordination on any particular equilibrium than the baseline treatment does. To examine this statement, we calculate the standard deviation of actions in every period for each group and average them over groups for both treatments. The results are displayed in Figure 2d. Higher standard deviations imply a higher degree of miscoordination among
players of the same group, with players choosing very distinct actions. As we see in Figure 2d, the average standard deviation in the first few periods of both treatments is similar, and as periods progress, both standard deviations decline. However, notice that the standard deviation in the revision mechanism is always below that in the baseline treatment, and, in addition, in most of the later periods, four out of six groups’ standard deviation is 0, as all the players in those groups were choosing exactly the same effort level. No group achieved such stability for more than a period in the baseline treatment.

5.1 What It Takes to Coordinate

To understand why the revision mechanism improves both the individual’s ability to coordinate and the actual strategy profile on which players coordinate, we study the forces behind our main treatment. The revision mechanism combines two distinct forces: first, it improves player’s capacity to communicate what their chosen actions will be; and second, it makes players commit to their words. During the pre-play phase, players publicly communicate their intended actions by choosing an action and publicizing it. However, players can change their chosen action only if and when a revision opportunity is awarded, and the action chosen at the end of the countdown is the action played. Thus, as the deadline approaches, players effectively commit to their chosen action. To separate the relative importance of each of these forces in promoting coordination on payoff dominant profile, we run a cheap talk treatment, in which the pre-play revision mechanism is non-binding. The results are discussed below.

First, we focus on the importance of communication—introduced in the cheap talk treatment—to achieve better coordination on the Pareto efficient profile. On average, cheap talk implies a significantly higher minimum effort than that of the baseline treatment, and the test of the null hypothesis of equal distributions of minimum efforts in these two treatments is rejected using a Komogorov-Smirnov test with $p < 0.01$. In addition, we test the null hypothesis of equal distributions of effort choices in both treatments
in all periods combined and separately for each period. A K-S test rejects the hypothesis with $p < 0.01$ for all periods pooled together and also, for separate periods after Period 5.

(a) Average Payoff

(b) Average Minimum Action

(c) Frequency of Highest Effort

(d) Average Standard Deviation

Figure 3: Treatment Comparisons

Communication among players—as introduced by the cheap talk treatment—significantly increases the minimum effort chosen (similar to the results of Blume and Ortmann (2007); more analysis on messages and final actions in cheap talk treatment can be found in Appendix E). This suggests that communication is, indeed, an important part of how the revision mechanism works to promote coordination on payoff superior outcomes. However, that answers only a part of our question; thus next, we assess the importance of the commitment. We begin by focusing on the average minimum action in each period, for each of our three treatments, displayed in Figure 3b. Although the average minimum
action chosen in the cheap talk is significantly higher than in the baseline treatment, it is also significantly lower than in the revision mechanism. Indeed, the test of the null hypothesis of equality of the average minimum efforts in revision mechanism and cheap talk treatments is rejected (MWU test, $p < 0.05$). In addition, the null hypothesis of equal distributions of minimum effort choices is also rejected (K-S test, $p < 0.05$). These differences suggest that commitment also plays an important role in increasing the minimum effort. In the rest of this subsection, we will present evidence that commitment increases the frequency of efficient effort and provides better coordination on any equilibrium. All these differences result in significantly lower payoffs in the treatment without commitment.

As presented in Figure 3c, all three treatments start the first period at the similar frequency of maximum effort (around 70%). However, the frequency with which the Pareto efficient equilibrium effort is chosen in the revision mechanism treatment starts dominating the other two treatments from period 4 and on. The frequency of highest effort in the revision mechanism is significantly higher than in the cheap talk treatment (MWU test, $p < 0.01$). Finally, we analyze how two treatments influence coordination on any equilibrium. The introduction of the revision mechanism drastically reduces miscoordination: the average standard deviation of actions decreases as periods progress (see Figure 3d) and in most of the later periods four out of six groups’ standard deviation is 0. The average standard deviation of the actions played in the cheap talk treatments, reveals a very different picture. Not only there is no clear declining pattern, but it does not seem to stabilize. Indeed, although the average standard deviation is initially smaller in the cheap talk than in the baseline treatment, they are similar in the later periods. This implies that the revision mechanism promotes a more stable coordination than the cheap talk treatment, further strengthening the significance of commitment.

We finish this subsection by comparing efficiency loss measured by the payoffs associated with each treatment. Efficiency loss encompasses the analyses done above, as both
a smaller minimum action and players’ miscoordination decrease payoffs. As noted before, the introduction of the pre-play revision mechanism more than halves (52.4%) the efficiency loss observed in the baseline treatment, while the similar gain from communication only is 33.7%, see Figure 4a. In Figure 4b, we present payoff ECDFs for all three treatments. The revision mechanism treatment induces significantly higher payoffs than the baseline treatment (K-S and MWU tests, \(p < 0.01 \)), and it is also significantly higher than the payoffs in the cheap talk treatment (K-S and MWU tests, \(p < 0.05 \)).

The evidence presented in this subsection reveals the importance of both communication and commitment in increasing coordination on the better outcomes and thus, payoffs. This result highlights the implications associated with the revision mechanism: the introduction of communication with commitment promotes significantly more coordination than cheap talk alone.

5.2 On the Road to Coordination

In this subsection, we analyze subjects’ revisions throughout the one-minute periods and report evidence suggesting that an important portion of the revised actions are forward thinking. We interpret these revisions as communication among players, trying to signal their intentions and influence each other’s effort choices.

There were 476 total revisions available for each group during all the ten periods. On
average, each subject received 7.93 revision opportunities per period. All subjects used 273 revisions in the main treatment; that is, 273 changes were made and posted on the graph. To take a more detailed look at subjects’ behavior dynamics, we classify all these moves into five categories and display our results in Figure 5.

(i) **Forward-Thinking**: moves that could decrease the payoff of the player, if it were the last instant; however, these moves will increase the payoff if other players follow. This category combines two types of moves: (1) the subject’s current choice is above the group’s minimum, but she still increases her chosen effort; (2) the subject’s choice is the group’s minimum, and she increases her effort above the second minimum action.

(ii) **Myopic Up**: moves increasing the player’s effort level that would increase the payoff of the player if it were the last instant. This category contains the subject’s moves when the subject is the group’s minimum, and she moves up to the second minimum choice.

(iii) **Myopic Down**: moves decreasing the player’s effort that would increase her payoff if it were the last instant. This category contains the subject’s moves when she decreases her effort choice, moving closer to the group minimum.

(iv) **Punishment**: moves decreasing the player’s effort, below the group’s current minimum. This type of move would be costly if it were the last instant, as it would result in a lower payoff than the move simply matching the group’s minimum— as in (iii) Myopic Down.

(v) **Other**: moves decreasing the player’s effort, when the subject was already at the group minimum. This category contains moves when subject decreases her effort choice, which could decreases the subject’s own payoff, as she already was at the group minimum.

We look into individual revisions and its distribution in Appendix G.
The first thing to note is that players consistently use revisions to communicate strategies and to influence other players’ behavior. The main way in which players communicate through revisions is to use forward-thinking moves – myopically suboptimal effort level increases. These revisions would increase a player’s payoff only if other players also move up their effort levels by the end of the countdown. This is the process that is at the core of the main theorem proof and we find that almost a half (47.6%) of the initial revisions are forward-thinking.

Figure 5: Classification of All Revisions in Revision Mechanism

Among all periods, a quarter of the moves are forward-thinking, while almost 60% are myopic moves, with the majority of those being myopic down moves. However, if we focus on the first period, we see almost 40% of the revisions are forward-thinking, the same share as myopic down moves. The difference between the first round and overall revisions suggests that the communication embedded in the revisions plays a more important role at the beginning of the players’ interaction, when there is more strategic uncertainty.

A second way that a revision could be used as a communication channel would be

18 This is similar to the idea of teaching other players how to play. The influence of “teachers” in leading to Nash play is studied in [Hyndman et al. (2012)](https://example.com).
through punitive revisions, in which a player revises her effort down, below the minimum effort chosen by the group. This type of revision, however, is quite infrequent, as only 4% of the moves were punishments, which is 11 moves out of a total of 273. In line with previous studies, such as Andreoni et al. (2002), punishment strategies are infrequently used—and, in particular, less used than reward strategies—in order to foster cooperation. Note, however, that the lack of punishment in our setting could also be a result of a lower bound on effort choices. If one of the group members chooses the lowest effort level, then there is no room for other group members to punish the subject, as they cannot move below the lowest effort level.

Table 3 presents the number of revision opportunities used by each group and their corresponding minimum efforts in the terminal period. Observe the inverted correlation between a group’s last-period minimum effort and the number of revisions effectively made by that group. While the groups that have coordinated in the efficient equilibrium have made, on average, 26 revisions, players in the only group that coordinated in the payoff worst equilibrium revised their strategies 100 times. With that many revisions, it is apparent that the failure to coordinate on a more efficient equilibrium did not result from lack of trying to communicate.

Table 3: Number of Revisions per Group in the Revision Mechanism

<table>
<thead>
<tr>
<th></th>
<th>Group 1</th>
<th>Group 2</th>
<th>Group 3</th>
<th>Group 4</th>
<th>Group 5</th>
<th>Group 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Last Period Mins</td>
<td>7</td>
<td>1</td>
<td>7</td>
<td>6</td>
<td>7</td>
<td>6</td>
</tr>
<tr>
<td>Number of Revisions</td>
<td>43</td>
<td>100</td>
<td>28</td>
<td>78</td>
<td>6</td>
<td>18</td>
</tr>
</tbody>
</table>

To analyze the players’ behavior more closely and to identify possible reasons for coordination on the payoff worst equilibrium, we take a closer look at Group 2 (detailed analysis can be found in Appendix F). In summary, we identify one subject as being unresponsive to the team members’ actions or revisions and the choices of this subject seem to be the main driving force behind the group’s failure to coordinate on the payoff-dominant
equilibrium. This shows how unforgiving the minimum game is if one player chooses the lowest effort instead of the efficient one, all players’ payoffs decrease. It is interesting to note, however, this particular subject did not seem to have a discouraging effect on others, as half of the group still began the last period by choosing the efficient action and adjusted their actions at the end of the final one-minute countdown.

It is important to emphasize here that the groups that achieved efficiency did not choose the efficient outcome from the start. To the contrary, in no group did all subjects start with efficient actions, though five out of the six groups finished the game with the minimum action of 6 or 7. For example, in the first period, the minimum action of Group 6 was 1—the lowest possible effort; however, through a sequence of revisions the group managed to achieve efficiency by the end of the first period and earned 98.5% of the most efficient payoff.

6 Concluding Remarks

In this paper, we provide experimental evidence shedding light on how the introduction of an asynchronous revision pre-play phase increases the coordination on the Pareto dominant outcome in a minimum-effort game. As predicted by the theory, we show that the introduction of the revision mechanism significantly increases coordination on the payoff efficient outcome, and, thus, the subjects’ payoffs increase significantly with such a mechanism. There are two distinct sources of payoff inefficiencies in the minimum game: first, players may choose an equilibrium profile that is Pareto dominated by other equilibrium profiles; and second, players may miscoordinate around such an equilibrium profile. Our results show that the introduction of communication and commitment to the minimum-effort game reduces inefficiencies on both dimensions. Not only is the minimum action chosen significantly higher than in the baseline treatment, but the standard deviation of the actions played is significantly lower.

In coordination games, both miscoordination and the coordination on suboptimal
equilibria generate great efficiency loss. Consider the example of multiple firms simultaneously investing in a project, in which firms are to invest such that the investment level of a firm positively affects the payoff of the other firms. This paper suggests that the introduction of a pre-play phase, following our mechanism, could significantly increase both the investment and the return to the firms. That is, the investment level in a coordination game can be improved by a third party—not by her investment, but simply by creating a more favorable set of rules.

The introduction of the communication and commitment phase — the revision mechanism — contributes to increased coordination in superior outcomes through two distinct forces. First, it allows players to publicly communicate their intended actions, and, second, it forces players to commit to their strategies as time passes since the likelihood of having a revision opportunity diminishes. In order to disentangle these two forces, we run a cheap talk treatment, in which players communicate but do not commit to their words. We first show that, as expected, communication is an important force for understanding how the revision mechanism works and significantly reduces the inefficiency when compared to the baseline treatment. However, communication is not the only force at play, and commitment also plays a crucial role. We show that the revision mechanism leads to significantly higher payoffs to the agents than the cheap talk treatment does. The interpretation of the revision mechanism as a policy suggestion is strengthened by the above separation. Even if pre-play communication occurs in real life in the form of negotiations, the introduction of commitment as signing a binding agreement at the end of these negotiations can further improve payoffs. Therefore, even if firms routinely discuss their investment strategies, the investment level and firm returns can still be increased by changing the environment in which the decisions are made.
References

Appendices

A Proof of Proposition

We need to recall Definition 1 and Theorem 2 from Calcagno et al. (2014).

An action profile \(x^* \) is strictly Pareto-dominant if \(u_i(x^*) > u_i(x) \) for all \(i \) and all \(x \in X \) with \(x \neq x^* \). A game is a common interest game if it has a strictly Pareto-dominant action profile.

Definition 1 A common interest game is said to be a \(K \)-coordination game if for any \(i, j \in I \) and \(x \in X \),

\[
\frac{u_i(x^*) - u_i(x)}{u_i(x^*) - u_i} \leq K \frac{u_j(x^*) - u_j(x)}{u_j(x^*) - u_j}
\]

where \(u_i = \min_x u_i(x) \).

Let the smallest value of \(r_i \) be \(\alpha = \min_{i \in I} r_i \) and the second-smallest value of \(r_i \) be \(\beta = \min_{i \neq j^*} r_i \), where \(j^* \) is an arbitrary member of \(\arg \min_{i \in I} r_i \).

Theorem 2 Suppose that a common interest game is a \(K \)-coordination game with the strict Pareto-dominant action profile \(x^* \), and

\[
(1 - \alpha - \beta)K < 1 - \beta
\]

Then, for any \(\varepsilon > 0 \), there exists \(T' \) such that for all \(T > T' \), in all revision equilibria, \(x(0) = x^* \) with probability higher than \(1 - \varepsilon \).

Now let us prove Proposition 1 using Theorem 2.

Proof. Rewrite the Theorem 2 condition:

\[
1 - \min_{i \in I} r_i - K(1 - \min_{i \in I} r_i - \min_{i \neq j^*} r_i) > 0
\]

Note that LHS of the condition is maximized when revision opportunities are equal.
for all players $r_i = r_j = 1/n, \forall i, j \in I$—the second condition of Proposition 1. Substituting $r_i = r_j = 1/n, \forall i, j \in I$ into the condition above yields $K < \frac{n-1}{n-2}$.

The condition from Theorem 2 sets an upper bound on the common interest component $K < \frac{n-1}{n-2}$. Now let us rewrite the upper bound on K in terms of minimum game coefficients. To do so, recall that the minimum-effort game payoff function $\pi_i(e) = \gamma - \beta e_i + \alpha \min_{j \in I} e_j$. Using the symmetry of the payoff function, we can rewrite the K-coordination game definition as $\pi_i(x^*) - \pi_i(x) \leq K(\pi_j(x^*) - \pi_j(x))$ for any $i, j \in I$ and $x \in X$. The worst-case scenario is that all other players coordinate on some effort e, while one of the players chooses the maximum effort e_{max}. In such a scenario, the expression can be further rewritten as $\gamma + e_{\text{max}}(\alpha - \beta) - (\gamma - \beta e_{\text{max}} + \alpha e) \leq K(\gamma + e_{\text{max}}(\alpha - \beta) - (\gamma - \beta e + \alpha e))$ and simplified to $\alpha(e_{\text{max}} - e) \leq K((\alpha - \beta)(e_{\text{max}} - e))$. Finally, we get $K \geq \frac{\alpha}{\alpha - \beta}$, which provides us with a lower bound on the coordination coefficient. Let us put together the upper bound and lower bound on K, $\frac{\alpha}{\alpha - \beta} < \frac{n-1}{n-2}$, which simplifies to $\alpha > (n - 1)\beta$ — the first condition of our Proposition 1.

B By Second Data

In Figure 6 and 7, we have put periods and seconds on the x-axis and average minimum action and average action on the y-axis.

Figure 6: Average Minimum Action

![Figure 6: Average Minimum Action](image)
C Group Level Data

For all groups in three treatments we calculate the minimum effort in every period and the results are displayed in Figure 8. As we have seen from the aggregate results in Figure 2b, the groups in revision mechanism treatment stabilize and achieve higher effort level compared to baseline and cheap talk treatments.

Figure 8: Group Minimums in Each Treatment

(a) Revision Mechanism

(b) Baseline Treatment

(c) Cheap Talk
D Choice vs Posted Action

In our paper, actions can be changed only when a revision opportunity is awarded; thus, in any instant there are two different data points per player: (i) the action the player is currently committed to, which all the other players are observing; and (ii) the action currently selected by the player. Only after a revision opportunity is awarded can the selected action become the action that the player is committed to.

Let us evaluate the robustness of our experimental design by examining whether our choices of the time interval length and the revision probability had an impact on the choices. In order to test that, we compare the last instant intended action with the action played. If the time interval were too short, or revisions too infrequent, the players’ intended actions would be different than the posted actions, even in the last instant, and agents would have been constrained in their choice process. However, we cannot reject the hypothesis of equal distributions of actions ($p > 0.1$), which indicates that the choice of interval length and revision frequency did not bind players’ behaviors, thus aligning our experimental design with the conditions of Proposition 1.

E Cheap Talk: Last Message and Final Action

In every period of cheap talk treatment, subjects have sixty seconds to revise their action. However, after one minute countdown is over, screen appears where subjects choose their final action which is the only payoff relevant choice. We are interested in investigating how predictive are the last instant messages for the final action.

First, we simply aggregate all the information from all periods and groups in a histogram, see Figure 9.

For more insight, we run a regression accounting for the group’s minimum message, see Table 4. We find that both: subject’s last message and her group’s minimum message, are relevant for her final choice; however, the group’s minimum message seems to be a
better predictor. That is, subject is more likely to decrease her effort to the lowest message rather than follow through her intended action.

Table 4: Regression with Clustered Errorsa,b

<table>
<thead>
<tr>
<th>Final Choice</th>
<th>(1)</th>
<th>s.e.</th>
<th>(2)</th>
<th>s.e.</th>
<th>(3)</th>
<th>s.e.</th>
</tr>
</thead>
<tbody>
<tr>
<td>60th Second Message</td>
<td>0.298*</td>
<td>(0.105)</td>
<td>0.330</td>
<td>(0.181)</td>
<td>0.265***</td>
<td>(0.042)</td>
</tr>
<tr>
<td>60th Second Minimum</td>
<td>0.400**</td>
<td>(0.122)</td>
<td>0.341**</td>
<td>(0.129)</td>
<td>0.486***</td>
<td>(0.131)</td>
</tr>
<tr>
<td>Intercept</td>
<td>1.818*</td>
<td>(0.672)</td>
<td>2.064**</td>
<td>(0.764)</td>
<td>1.419</td>
<td>(0.985)</td>
</tr>
</tbody>
</table>

Observations | 360 | 180 | 180 |

a Note: (1) - all periods; (2) - first 5 periods; (3) - last 5 periods;
b Note: Standard Errors are clustered by Group; Significance: * $p < 0.05$, ** $p < 0.01$, *** $p < 0.001$.

Figure 9: Last Message and Final Action
F Group 2 Dynamics

One of the six groups in the revision mechanism treatment diverged to choosing the payoff-worst equilibrium. To analyze the players’ behavior more closely and to identify possible reasons for coordination on the payoff-worst equilibrium, we take a closer look at Group 2’s actions and revisions over all periods and within them. In this group, three out of six group members began every period by choosing the efficient action and moved towards the group minimum later. Among the other three, two were responsive to the group members’ actions and revisions, and only one subject did not seem to react to the information embedded in other players’ actions. In the first period, four out of six group members initially chose the efficient action, and the other two chose action 3. One of two players who chose 3 moved up to 5, then 6, and the unresponsive subject stayed at 3 in spite of 8 awarded revision opportunities.

We identify the latter subject as being unresponsive to the team members’ actions and revisions. Even though the group minimum at the end of the first period was 3, this subject started the second period by choosing action 2 and then switching to 1, although the minimum without this subject was 5. Moreover, in the fourth period, this group achieved the minimum effort 6, and then the unresponsive subject suddenly moved down from 6 to 4, while all other group members chose the efficient action. The choices of the unresponsive subject seem to be the main driving force behind the group’s failure to coordinate on the payoff-dominant equilibrium. This shows how unforgiving the minimum game is if one player chooses the lowest effort instead of the efficient one, all players’ payoffs decrease. It is interesting to note, however, this particular subject did not seem to have a discouraging effect on others, as half of the group still began the last period by choosing the efficient action and adjusted their actions up until the end of the final one-minute countdown.
G Typology of Moves

In subsection 5.2 we classify revisions in various categories and identify the use of pre-play phase as a communication device; and as an important element on how players coordinate. We now further investigate the revision process, by looking on whether players assume distinct roles within the groups, that is whether forward thinking revisions are usually made by the same subgroup of players.

Although on average each subject used 7.58 revisions, the median number of revisions is 4.5. In Figure 10 we display the number of revisions each player has taken, and classify those revisions according to the same criteria used in subsection 5.2: a revision move may be forward-thinking, myopic up, myopic down, punishment, or other.

![Figure 10: Revision Histogram](image)

Figure 10 shows that one sixth of our subjects have never changed their action even once, and half of the subjects made less than 5 revisions. Nevertheless, there are subjects making more than 15 revisions, and, in particular, one of them revising the action as many as 28 times. Note that members of Group 2, that coordinated on the payoff worst equilibrium, are well above the average and each have used more than 10 revisions.

As we classify each player’s revision moves, Figure 10 indicates that players distribu-
tion of revision moves across those categories is quite similar. This indicates that players do not assume fixed roles within each group—one player as the forward-thinking, another as a follower, etc—instead, they all try to communicate their intentions through forward-thinking moves, and they all use the other types of revisions in similar proportions.

H Survey Results

At the end of the experiment, our subjects took a short survey recording their Gender, GPA, whether they have taken a Game Theory course and Major—summary is in Table 5.

<table>
<thead>
<tr>
<th>Variable:</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gender: Female</td>
<td>49%</td>
</tr>
<tr>
<td>Game Theory: Yes</td>
<td>22.2%</td>
</tr>
<tr>
<td>Self-Reported GPA</td>
<td>3.48</td>
</tr>
</tbody>
</table>
I Instructions - Baseline

Instructions

This is an experiment in decision making. Funds have been provided to run this experiment. If you follow instructions and make good decisions you may earn a substantial amount of money, that will be paid to you in CASH VOUCHERS at the end of the experiment. What you earn depends partly on your decisions and partly on the decisions of others.

The entire session will take place through computer terminals, and all interactions between you will be done through the computers. Please, do not talk or communicate in any way during the session. Please, turn off your phones now.

You will be randomly divided in groups of 6 persons, and will make a sequence of 10 decisions as a part of that group. After 10 periods, all groups will be disband and the phase will end. This will be the end of the experiment.

Task Description

Each period, you and every member of your group will choose an integer: 1, 2, 3, 4, 5, 6 or 7. Your choice and the smallest number chosen in your group (including yours) will determine your payoff in that period. Table 1 presents your payoffs in all possible scenarios. For example, if you choose number 5 and the smallest number chosen in your group is 4 you will get 78 Cents ($0.78).

<table>
<thead>
<tr>
<th>Smallest Number Chosen</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>1.30</td>
<td>1.10</td>
<td>0.90</td>
<td>0.70</td>
<td>0.50</td>
<td>0.30</td>
<td>0.10</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>—</td>
<td>1.14</td>
<td>0.94</td>
<td>0.74</td>
<td>0.54</td>
<td>0.34</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td>—</td>
<td>0.98</td>
<td>0.78</td>
<td>0.58</td>
<td>0.38</td>
</tr>
<tr>
<td>Your Choice</td>
<td></td>
<td></td>
<td></td>
<td>—</td>
<td>0.82</td>
<td>0.62</td>
<td>0.42</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>—</td>
<td>0.66</td>
<td>0.46</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>—</td>
<td>0.66</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>—</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 1 – Payoff from different actions

Payoffs

Your final payoff will be the sum of payoffs from all 10 periods plus the show up fee.
Instructions

This is an experiment in decision making. Funds have been provided to run this experiment. If you follow instructions and make good decisions you may earn a substantial amount of money, that will be paid to you in CASH VOUCHERS at the end of the experiment. What you earn depends partly on your decisions and partly on the decisions of others.

The entire session will take place through computer terminals, and all interactions between you will be done through the computers. Please, do not talk or communicate in any way during the session. Please, turn off your phones now.

You will be randomly divided in groups of 6 persons, and will make a sequence of 10 decisions as a part of that group. After 10 periods, all groups will be disbanded and the phase will end. This will be the end of the experiment.

Task Description

Each period, you and every member of your group will choose an integer: 1, 2, 3, 4, 5, 6 or 7. Your choice and the smallest number chosen in your group (including yours) will determine your payoff in that period. Table 1 presents your payoffs in all possible scenarios. For example, if you choose number 5 and the smallest number chosen in your group is 4 you will get 78 Cents ($0.78).

<table>
<thead>
<tr>
<th>Smallest Number Chosen</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>1.30</td>
<td>1.10</td>
<td>0.90</td>
<td>0.70</td>
<td>0.50</td>
<td>0.30</td>
<td>0.10</td>
</tr>
<tr>
<td>6</td>
<td>—</td>
<td>1.14</td>
<td>0.94</td>
<td>0.74</td>
<td>0.54</td>
<td>0.34</td>
<td>0.14</td>
</tr>
<tr>
<td>5</td>
<td>—</td>
<td>—</td>
<td>0.98</td>
<td>0.78</td>
<td>0.58</td>
<td>0.38</td>
<td>0.18</td>
</tr>
<tr>
<td>4</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>0.82</td>
<td>0.62</td>
<td>0.42</td>
<td>0.22</td>
</tr>
<tr>
<td>3</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>0.66</td>
<td>0.46</td>
<td>0.26</td>
</tr>
<tr>
<td>2</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>0.50</td>
<td>0.30</td>
</tr>
<tr>
<td>1</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>0.34</td>
</tr>
</tbody>
</table>

Table 1 – Payoff from different actions

Once you and all the members of your group have chosen a number, a 1-minute countdown will begin. Only the number posted at the end of the countdown matters for your payoff.
1-minute Countdown

1. Graph Description

Before the 1-minute countdown, you and every member of your group have chosen a number: 1, 2, 3, 4, 5, 6 or 7. Once every member of your group has made their initial choice, the 1-minute countdown begins.

![Figure 1](image.png)

Figure 1 – Screen-shot of one possible scenario, as soon as the 1-minute countdown begins.

When the 1-minute countdown begins your screen will appear as in Figure 1. In Figure 1, we have placed time in seconds on the horizontal axes and the number chosen by each of your group members on the vertical axes.

The initially picked numbers chosen by you and your cohort are place along the vertical line above the zero second mark. You will see the number posted of every participant in your group. For instance, in Figure 1, we see that 2 players have chosen number 5, 1 player has chosen 2, 1 player has chosen 3, 1 player has chosen 4 and 1 player has chosen 6. Your choice is always represented in the graph with the color green, and those of others by other colors.

As you can see the player has chosen number 2.

As time continues, during the 1 minute, you will be able to change your chosen number at any time by placing your cursor on your desired number to the left of the screen. When you choose a number, it will light up as the number 2 now is.

2. Revision Opportunities

However, the fact that you have changed your choice DOES NOT imply that the number on the graph will change. The number on the graph will only change if a **revision opportunity** is awarded to you. A revision opportunity is awarded at random times.

Every second a revision opportunity will be awarded to the group with 80% chance. When a revision opportunity is awarded to the group, it will be given to one of the 6 group members, with equal probability of \(\frac{1}{6} \). So the chance of any other member of your group having a revision opportunity and being able to change the posted number is exactly equal to yours: \(p = 0.8 \times \frac{1}{6} \approx 13\% \).
If you had changed the number chosen, and received a revision opportunity, your number on the graph will change (the GREEN line will shift). If a revision opportunity is awarded to you, but you had not previously changed your chosen number, the number on the graph will not change. Let’s call the number that you have chosen (the one that is lit up) which appears on the graph, your NUMBER POSTED on the graph.

Figure 2 – Screen-shot of one possible scenario, after 1 minute has passed.

When 30 seconds have passed your screen will appear as in Figure 2. You can see how many times any member of your group changed the number posted (the line changes) as well as whether a revision opportunity was awarded (a dot on the line). For instance, player PURPLE has not changed the number posted (which is 5) despite having received 5 revision opportunities (5 dot’s on light purple line). On the other hand, player ORANGE initially chose number 5, but after about 20 seconds the posted number became 3. Player GREEN has changed the number posted once. Let’s take a closer look at player GREEN’s actions:

(a) GREEN initially chose to post 2.
(b) Then, in the 4th second, a revision opportunity arrived, but the number posted by player GREEN did not change.
(c) In second 15, a revision opportunity arrived and the number posted changed to 6. Note that this was only possible because he had changed the number chosen prior to the arrival of revision opportunity.
(d) In second 25, revision opportunity arrived, but the number posted didn’t change.

Finally, note that player GREEN has chosen the number 4 (it is lit up in green), but given that no revision opportunity has arrived, the NUMBER POSTED on the graph is still 6.
3. **Final Payoffs**

At the end of the 1 minute countdown, you will receive a payoff that depends on your number posted and on the smallest number posted by a player in your group. *Only the numbers posted at the end* of the countdown matter for your payoff. The numbers posted before do not matter at all for your payoff. Your **final payoff** will be the sum of payoffs from all 10 periods plus the show up fee.

![Figure 3](image_url)

Figure 3 – Screen-shot of one possible scenario, after the 1-minute countdown has finished.

When 1-minutes have passed your screen will appear as in Figure 3. You can see the number posted of every participant in your group. Note that only the number posted as the countdown ends matter for your payoff. For instance, GREEN’s payoff depends only on his **last number posted**, and on the **minimum number posted by his group members at the end of the countdown**.

The following probability facts and calculations may be useful:

1. Each player is expected to receive $0.8 \times \frac{1}{6} \times 60 = 8$ **revision** opportunities during the 1-minute countdown.

2. The chance of a player receiving no **revision** opportunity during the 1-minute countdown is approximately $(1 - 0.8 \times \frac{1}{6})^{60} \approx 0.000$, which is approximately **0**.

3. For any **10 second interval**, the chance of receiving at least one revision opportunity is of approximately **75%**.

4. For any **20 second interval**, the chance of receiving at least one revision opportunity is of approximately **95%**.
Instructions

This is an experiment in decision making. Funds have been provided to run this experiment. If you follow instructions and make good decisions you may earn a substantial amount of money, that will be paid to you in cash vouchers at the end of the experiment. What you earn depends partly on your decisions and partly on the decisions of others.

The entire session will take place through computer terminals, and all interactions between you will be done through the computers. Please, do not talk or communicate in any way during the session. Please, turn off your phones now.

You will be randomly divided in groups of 6 persons, and will make a sequence of 10 decisions as a part of that group. After 10 periods, all groups will be disband and the phase will end. This will be the end of the experiment.

Task Description

Each period, you and every member of your group will choose an integer: 1, 2, 3, 4, 5, 6 or 7. Your choice and the smallest number chosen in your group (including yours) will determine your payoff in that period. Table 1 presents your payoffs in all possible scenarios. For example, if you choose number 5 and the smallest number chosen in your group is 4 you will get 78 Cents ($0.78).

<table>
<thead>
<tr>
<th>Smallest Number Chosen</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>1.30</td>
<td>1.10</td>
<td>0.90</td>
<td>0.70</td>
<td>0.50</td>
<td>0.30</td>
<td>0.10</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>1.14</td>
<td>0.94</td>
<td>0.74</td>
<td>0.54</td>
<td>0.34</td>
<td>0.14</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td>0.98</td>
<td>0.78</td>
<td>0.58</td>
<td>0.38</td>
<td>0.18</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td>0.82</td>
<td>0.62</td>
<td>0.42</td>
<td>0.22</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.66</td>
<td>0.46</td>
<td>0.26</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.50</td>
<td>0.30</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.34</td>
</tr>
</tbody>
</table>

Table 1 – Payoff from different actions

Once you and all the members of your group have chosen a number, a 1-minute countdown will begin.
1-minute Countdown

1. Graph Description

Before the 1-minute countdown, you and every member of your group have chosen a number: 1, 2, 3, 4, 5, 6 or 7. Once every member of your group has made their initial choice, the 1-minute countdown begins.

![Graph Description](image)

Figure 1 – Screen-shot of one possible scenario, as soon as the 1-minute countdown begins.

When the 1-minute countdown begins your screen will appear as in Figure 1. In Figure 1, we have placed time in seconds on the horizontal axes and the number chosen by each of your group members on the vertical axes.

The initially picked numbers chosen by you and your cohort are place along the vertical line above the zero second mark. You will see the number posted of every participant in your group. For instance, in Figure 1, we see that 2 players have chosen number 5, 1 player has chosen 2, 1 player has chosen 3, 1 player has chosen 4 and 1 player has chosen 6. Your choice is always represented in the graph with the color green, and those of others by other colors.

As you can see the player has chosen number 2.

As time continues, during the 1 minute, you will be able to change your chosen number at any time by placing your cursor on your desired number to the left of the screen. When you choose a number, it will light up as the number 2 now is.

2. Revision Opportunities

However, the fact that you have changed your choice DOES NOT imply that the number on the graph will change. The number on the graph will only change if a revision opportunity is awarded to you. A revision opportunity is awarded at random times.

Every second a revision opportunity will be awarded to the group with 80% chance. When a revision opportunity is awarded to the group, it will be given to one of the 6 group members, with equal probability of \(\frac{1}{6} \). So the chance of any other member of your group having a revision opportunity and being able to change the posted number is exactly equal to yours:

\[
p = .8 \times \frac{1}{6} \approx 13%.
\]
If you had changed the number chosen, and received a revision opportunity, your number on the graph will change (the GREEN line will shift). If a revision opportunity is awarded to you, but you had not previously changed your chosen number, the number on the graph will not change. Let’s call the number that you have chosen (the one that is lit up) which appears on the graph, your **number posted**.

Figure 2 – Screen-shot of one possible scenario, after 1 minute has passed.

When 30 seconds have passed your screen will appear as in Figure 2. You can see how many times any member of your group changed the number posted (the line changes) as well as whether a revision opportunity was awarded (a dot on the line). For instance, player PURPLE has not changed the number posted (which is 5) despite having received 5 revision opportunities (5 dot’s on light purple line). On the other hand, player ORANGE initially chose number 5, but after about 20 seconds the posted number became 3. Player GREEN has changed the number posted once. Let’s take a closer look at player GREEN’s actions:

(a) GREEN initially chose to post 2.

(b) Then, in the 4th second, a revision opportunity arrived, but the number posted by player GREEN did not change.

(c) In second 15, a revision opportunity arrived and the number posted changed to 6. Note that this was only possible because he had changed the number chosen prior to the arrival of revision opportunity.

(d) In second 25, revision opportunity arrived, but the number posted didn’t change.

Finally, note that player GREEN has chosen the number 4 (it is lit up in green), but given that no revision opportunity has arrived, the **number posted** on the graph is still 6.
When 1-minute has passed your screen will appear as in Figure 3. You can see the number posted of every participant in your group.

3. **Final Choice**

Once 1-minute countdown is over you will see a screen like the one below. You pick a number and **this number combined with the minimum number chosen in your group will determine you payoff in the period.** Note that only numbers chosen after 1-minute countdown are relevant for your payoff, numbers chosen during the 1-minute countdown do not affect your payoff.

4. **Final Payoffs**

Your **final payoff** will be the sum of payoffs from all 10 periods plus the show up fee.
The following probability facts and calculations may be useful:

1. Each player is expected to receive
 \[0.8 \times \frac{1}{6} \times 60 = 8\] revision opportunities during the 1-minute countdown.

2. The chance of a player receiving no revision opportunity during the 1-minute countdown is approximately
 \[(1 - 0.8 \times \frac{1}{6})^{60} \approx 0.000,\] which is approximately 0.

3. For any 10 second interval, the chance of receiving at least one revision opportunity is of approximately 75%.

4. For any 20 second interval, the chance of receiving at least one revision opportunity is of approximately 95%.