Contagion of Sovereign Risk *

Cristina Arellano Yan Bai Sandra Lizarazo
Federal Reserve Bank of Minneapolis, University of Rochester International Monetary Fund
University of Minnesota, and NBER and NBER

September 5, 2017

Abstract

We develop a theory for contagion of sovereign risk based on financial links. In our multi-country model, default in one country can trigger default in other countries and this contagion generates co-movements in sovereign bond spreads. Countries are linked because they borrow, default, and renegotiate with common lenders and the bond price and recovery schedules for each country depend on both countries choices. Countries default together because by doing so they can renegotiate the debt simultaneously and pay lower recoveries. Foreign defaults also makes home borrowing more expensive as they increase the pricing kernel, lower home recoveries, and increase future home default probabilities. This tighter bond price schedule can also induce a home default. We apply our model to the debt crisis of Italy and Spain and show that our model can replicate the time path of spreads observed around 2012. In a counterfactual exercise, we find that contagion can account for one half and one third of the increase in the bond spreads of Italy and Spain.

Keywords: Contagion; Sovereign default; Renegotiation; Self-fulfilling crisis; European debt crisis

JEL classification: F3, G01

*This paper combines material of two previously circulated papers: “Linkages in Sovereign Debt Markets” by the first two authors, and “Contagion of Financial Crises in Sovereign Debt Markets” by the last author. We thank Laura Sunder-Plassmann for superb research assistance. The views expressed herein are those of the authors and not necessarily those of the Federal Reserve Bank of Minneapolis or the Federal Reserve System. E-mails: arellano.cristina@gmail.com; yanbai06@gmail.com; sanvaliz@gmail.com
1 Introduction

Sovereign debt crises tend to occur in tandem. During the 1980s, many Latin American countries defaulted on their sovereign debt. During the recent European debt crisis, many countries including Greece, Ireland, Italy, Portugal, and Spain experienced sizable spikes in their sovereign bond spreads.\(^1\) Yet, despite sovereign debt crises occurring in tandem, theoretical work on sovereign default has mainly studied countries in isolation.

We present a theory of sovereign risk contagion based on financial links between countries arising from common lenders. We develop a multicountry model in which default in one country triggers default in other countries and this contagion generates co-movements in sovereign bond spreads. A foreign default lowers the current home country’s bond prices and the future home recovery rates in the event of a renegotiation. These two forces can induce a home default as rolling over the debt is more difficult and renegotiating the defaulted debt in the future is more attractive. We apply our model to the debt crisis of Italy and Spain and show that our model can replicate the time path of spreads observed around 2012 for both countries. In a counterfactual exercise, we assess the contribution of contagion during the crisis and find that about 1/2 of the bond spread in Italy and 1/3 of the bond spread in Spain can be attributed to the debt crisis of the other country.

The model economy is dynamic and consists of two symmetric countries that borrow, default, and renegotiate their debt with competitive lenders that have concave payoffs. The bond prices reflect the risk-adjusted compensation for the loss that lenders face in case of default. Default entails costs for borrowing countries in terms of access to financial markets and direct output costs. After default, countries can renegotiate with a committee of lenders through Nash bargaining and pay the debt recovery. When multiple countries renegotiate, they do it simultaneously with lenders and exert a higher bargaining power.

Countries are connected because bond prices and recovery rates for each country are schedules that depend on both countries’ choices to default, borrow, and renegotiate. Bond prices contain a common time varying pricing kernel that depends also on both countries choices. Borrowing countries are strategic large players and understand that their choices impact all bond prices and recoveries. We analyze an intraperiod game where default, borrowing, and renegotiation decisions are best responses in the context of a dynamic recursive Markov equilibrium.

A foreign default increases incentives to default at home because it makes default less costly and new borrowing more expensive. Foreign defaults make home default less costly

\(^1\)The clustering of default crises is studied at length in Reinhart and Rogoff (2011).
by lowering future recoveries because countries can extract more surplus if they renegotiate simultaneously. Foreign defaults make home borrowing more expensive by tightening the bond price schedule as they increase the pricing kernel of bonds, lower future home recoveries, and increase future home default probabilities. This dependency arises during fundamental foreign defaults, where the foreign country defaults because of high debt and low income, and also during self-fulfilling defaults, where both countries default only because the other is defaulting. Such dependency generates ex-ante correlated bond spreads.

Recoveries depend on the number of countries renegotiating, because all parties renegotiating do it simultaneously. Multiple country renegotiations generate lower debt recoveries as countries have larger effective bargaining power by doing it together. A foreign renegotiation, therefore, increases the incentives to renegotiate at home and this desire to renegotiate together in turn gives incentives for both countries to default together. We show that this empirical implication of the model is born in the historical cross country data. In the data, recovery rates are about 16% lower on average in years with many countries renegotiating. We use this data to discipline this force in our quantitative exercise.²

The bond price schedule incorporates the lenders’ pricing kernel, the risk-adjusted default probability, and the recovery rate. Foreign defaults worsen these three elements. Foreign defaults lowers lender’s consumption which rises the pricing kernel. Foreign default also increase the future default probability and lowers the future recovery rate both of which lower bond prices. Such tightening of the price schedule increases incentives to default at home. Foreign recessions or foreign large borrowing that increase future foreign defaults also tighten the current bond price schedule at home because of future joint defaults.

We parameterize the model to Italy and Spain. The model predicts that country bond spreads and default probabilities co-move. Spreads at home are 1.1% higher in times when the foreign country has high bond spreads (above its 75 percentile) relative to when it has low bond spreads (below its 25 percentile). We show through an impulse response function that foreign recessions with no changes in output at home increase foreign and home spreads. The increase in home spreads is about 40% that of foreign spreads. The co-movement of bond spreads is a hallmark of the historical sovereign debt crises in the world.

Home default probabilities and recovery rates also respond to foreign conditions. Default probabilities jump from about 2% on average to over 40% with a foreign default. Recoveries are lowest when both countries renegotiate together and highest, about 18% higher than average, when the foreign country defaults. We also show that the model predictions for

²The Brady Plan of the early 1990s is a specific example in which many Latin American countries renegotiated together and received an unusually good deal. These countries were able to exchange their defaulted debt for new Brady bonds with principal collateralized by the U.S. government.
the patterns of defaults, renegotiations, and recoveries are also present in the cross country historical data for 77 countries since 1970.

To compare the model to the European experience, we perform an event analysis. We feed into the model the paths for output observed in Italy and Spain from 2006 to 2015, which featured sizable declines, and compare the predictions of the model for bond spreads. Our model can replicate the paths of bond spreads for both countries. Spreads in the model and data very low spreads in the beginning of the event, increased starting in 2009, and peaked in 2012 at about 5% for Italy and 4% for Spain. We finally assess the contribution of contagion for the increase in bond spreads in each country during the event through a counterfactual exercise that eliminates the debt crisis in one country at a time. We find that contagion from the debt crisis from one country to another one is strong and accounts for more than 1/3 of the increase in spreads during 2012.

The model in this paper builds on the benchmark model of equilibrium default with incomplete markets analyzed in Aguiar and Gopinath (2006) and Arellano (2008), and in a seminal paper on sovereign debt by Eaton and Gersovitz (1981). These papers analyze the case of risk-neutral lenders, abstract from recovery, and focus on the default experiences of single countries. Borri and Verdelhan (2009) and Lizarazo (2013) study the case of risk-averse lenders, and Pouzo and Presno (2011) study the case of lenders with uncertainty aversion. They show that deviations from risk neutrality allow the model to generate spreads larger than default probabilities, which is a feature of the data. Borri and Verdelhan also show empirically that a common factor drives a substantial portion of the variation observed. Park (2013) studies contagion in a model similar to ours in which multiple borrowers trade with risk-averse lenders. His model can also generate co-movement in spreads across borrowing countries; however, he abstracts from any debt recovery and strategic interactions. Yue (2010), D’Erasmo (2011), and Benjamin and Wright (2009) study debt renegotiation in a model with risk-neutral lenders. They find that debt renegotiation allows the model to better match the default frequencies and the debt-to-output ratios.

Our model also presents new types of self-fulfilling equilibria that lead to sovereign defaults. Coordination failures have been popular explanations for sovereign debt crises. The main channel analyzed in the literature, however, emphasizes coordination failures among lenders, whereas we focus on coordination issues among borrowers. Cole and Kehoe (2000) and Lorenzoni and Werning (2013) develop a models with multiple equilibria in which defaults are self-fulfilling: lenders refuse to completely roll over the country’s debt because they think that countries will default on the debt, which in turn leads to default. In contrast, the self-fulfilling equilibria of our model arise because of strategic interactions among large
borrowers, which we view as also relevant for the case in which sovereign countries borrow from international lenders.

2 Model

Consider an economy in which two symmetric countries, Home and Foreign, borrow from a continuum of foreign lenders. Countries are strategic large players who borrow, default, and renegotiate their debt. Lenders are competitive and have a concave payoff function. Countries that default receive a bad credit standing, are excluded from borrowing, and suffer a direct output cost. Countries in bad credit standing can renegotiate their debt with a committee of lenders and bargain over the debt recovery. After renegotiation is complete, countries regain their good credit standing.

The lifetime payoff to each borrowing country i is $E \sum_{t=0}^{\infty} \beta^t u(c_{it})$, and the payoff to lenders is $E \sum_{t=0}^{\infty} \delta^t u(c_{Lt})$, where c_{it} is the consumption of the representative household in each country, c_{Lt} is the consumption of lenders, and the function $u(\cdot)$ is increasing and concave. Borrowing countries are more impatient than lenders: $0 < \beta < \delta < 1$.

Each borrowing country receives a stochastic endowment each period. Let $y = \{y_i\}$ be the vector of endowments for each country in a period. These shocks follow a Markov process with transition matrix $\pi(y', y)$. We assume that lenders face no additional shocks. The endogenous aggregate states consist of the vector of countries’ debt holdings $b = \{b_i\}$ and their credit standing $h = \{h_i\}$. The economy-wide state s incorporates the endogenous and exogenous states: $s = \{b, h, y\}$.

2.1 Borrowing Countries

The government of each country is benevolent, and its objective is to maximize household utility. The government trades one-period discount bonds with foreign lenders, decides whether to repay or default on its debt, and after a default, decides whether or not to renegotiate the debt. The government rebates back to households all the proceedings from its credit operations in a lump-sum fashion. We label country i as Home and country $-i$ as Foreign. Below we describe in detail the problem for the home country. The problem for the foreign country is symmetric.

We consider a Markov equilibrium where the governments take as given future decisions. The current strategy for the government at Home incorporates its repayment or renegotiation decision d_i and its borrowing decision b_i'. When the country is in good credit standing $h_i = 0$, it decides to repay the debt by setting $d_i = 0$. Only after deciding to repay can the country
choose its new borrowing b'_i. If the government decides to default by setting $d_i = 1$, the
government cannot borrow and its credit standing changes to bad the following period. When
the home government is in bad credit standing $h_i = 1$, it decides to renegotiate by setting
$d_i = 0$. Renegotiation changes the government’s credit standing to good the next period.
After renegotiation the government starts with zero debt, $b'_i = 0$. The current strategy for
both countries is summarized by $\{b', d\} = \{b'_i, d_i\}_{\forall i}$.

The home prices for loans $q_i(s, b', d)$ and recovery $\phi_i(s, b', d)$ are functions that depend on
the current strategies for both countries as well as the aggregate state. In making decisions,
the governments take as given the price and recovery functions. The bond price function
compensates the lender for the risk-adjusted loss in case of default and depends on the
strategies of both countries and the aggregate states because the lenders’ kernel, as well
as future defaults, renegotiations, and recoveries, depend on all of these variables. The
recovery function is the result of a bargaining process, the outcome of which depends on
the countries’ strategies and the aggregate state. Below we specify how the bond price and
recovery functions are determined.

The current home consumption depends on the aggregate state and the current strategies
of both countries $c_i(s, b', d)$. Consider the case of the home country having good credit
standing, $h_i = 0$, and an arbitrary strategy to repay $d_i = 0$ and to borrow b'_i. Consumption
in this case is

$$c_i = y_i - b'_i + q_i(s, b', d)b'_i. \quad (1)$$

Consumption for country i also depends on the state and strategy of the other country
by their effect on the price q_i. Now consider consumption with a strategy to default, such
that $d_i = 1$. Default results in exclusion from trading international bonds and output costs
$y_i - y^d_i$, with $y^d_i \leq y_i$. Consumption equals output during these periods:

$$c_i = y^d_i. \quad (2)$$

Finally, consider the case when country i is in bad credit standing such that $h_i = 1$. When
renegotiation is chosen, $d_i = 0$, the country pays the recovery $\phi_i(s, b', d)$, starts tomorrow with
zero debt, $b'_i = 0$, and consumption is

$$c_i = y_i - \phi_i(s, b', d). \quad (3)$$

Here, the state and strategy of the other country also affect home consumption by their effect
on the recovery. If the home country does not renegotiate, then consumption satisfies (2).

We represent the home country’s payoffs as a dynamic programming problem. The gov-
ernment today takes as given all the decisions of future governments, which are summarized by the continuation value function from tomorrow on \(v_i(s') \) when the state tomorrow is \(s' \).

The lifetime payoff of the home country today when the state today is \(s \) for arbitrary current strategies \((b', d)\) is

\[
w_i(s, b', d) = \{u(c_i(s, b', d)) + \beta \sum y' \pi(y', y) v_i(s') \}.
\]

(4)

Tomorrow’s state \(s' = \{b', h', y'\} \) depends on the current strategy of both countries. Specifically, the future credit standing and debt tomorrow depend on the default and renegotiation of each country, as follows:

\[
h'_i = \begin{cases}
1 & \text{if } d_i = 1 \\
0 & \text{otherwise}
\end{cases}
\]

(5)

\[
b'_i = \begin{cases}
b'_i & \text{if } h_i = 0 \text{ and } d_i = 0 \\
b_i & \text{if } d_i = 1 \\
0 & \text{otherwise}
\end{cases}
\]

(6)

In our model, each borrowing country internalizes the effects its strategies have on bond prices and recoveries. We consider an intraperiod game between the two countries has two stages. In the first stage, countries make their default and renegotiation decisions. In the second stage, if countries chose to repay in the first stage, they make their borrowing decisions.\(^3\)

To develop the intraperiod game, we start with the second borrowing stage after default and renegotiation decisions \(d \) have been made. The nature of this subgame depends on the credit standing of countries and their repayment decisions. When all countries are in good credit standing and repay, \(\{d_i = 0\}_{\forall i} \), equilibrium borrowing strategies \(B(s, d) = \{B_i(s, d)\}_{\forall i} \) are Nash in that \(\{B_i = x^b_i(B_{-i}, s, d)\}_{\forall i} \), where \(x^b_i(b'_{-i}, s, d) \) is the borrowing best response of each country \(i \) for arbitrary borrowing strategies \(b'_{-i} \), given states \(s \) and repayment choices \(d \),

\[
x^b_i(b'_{-i}, s, d) = \{b'_i : \max_{b'_i} w_i(s, b', d; v_i(s')) \} \text{ for all } i.
\]

(7)

When each country starts with a bad credit standing or it defaults, it cannot borrow and hence does not enter the second borrowing stage of the game. Here, the remaining country \(i \) chooses its borrowing to satisfy (7), where \(b'_{-i} \) equals \(b_{-i} \) or 0 according to the default and

\(^3\)We subdivide the intraperiod game between the two countries into a repayment and borrowing stage because it substantially simplifies our computational algorithm as explained in the Appendix.
renegotiation choices given by (6).

In the first stage of the game, each country i chooses its repayment strategy d_i taking as given the equilibrium borrowing strategies of the second stage. The equilibrium repayment strategies $D(s) = \{D_i(s)\}_{\forall i}$ are Nash in that $D_i = x^d_i(D_{-i}, s, B(s, D))_{\forall i}$, where $x^d_i(d_{-i}, s, B(s, d))$ is the repayment best response of each country i for arbitrary repayment strategies d_{-i}, given states s and taking into account the outcome of the second borrowing stage $B(s, d)$:

$$x^d_i(d_{-i}, s, B(s, d)) = \{d_i : \max_{d_i} w_i(s, B(s, d), d; v_i(s'))\} \quad \text{for all } i. \quad (8)$$

The resulting outcome of the intraperiod game is summarized by the repayment and borrowing functions $\{D\}$ and $\{B(s) = B(s, D(s))\}$, as well as the consumptions $c(s) = \{c_i(s)\}_{\forall i}$ and values $v(s) = \{v_i(s)\}_{\forall i}$.

Definition 1. A Markov partial equilibrium takes as given price functions $\{q_i(s, b', d)\}_{\forall i}$ and recovery functions $\{\phi_i(s, b', d)\}_{\forall i}$ and consists of equilibrium strategies $\{B(s), D(s)\}$ and payoffs $c(s)$ and $v(s)$ such that

(1) Given future value functions $v(s')$, period equilibrium strategies $\{B(s), D(s)\}$ are the solution of the intraperiod game such that they satisfy (7), (8), and (6).

(2) Equilibrium payoffs $v(s)$ implied by equilibrium strategies $\{B(s), D(s)\}$ are a fixed point $v_i(s) = w_i(s, B(s), D(s); v_i(s'))$ for all i.

2.2 Lenders

Competitive lenders trade bonds with the two borrowing countries. Every period lenders receive a constant payoff from the net operations of other loans r_LL and deposits r_DD, which we summarize by $y_L = r_LL - r_DD$. We assume that lenders honor all financial contracts.

Lenders take as given the evolution of the aggregate state,

$$s' = H(s) \quad (9)$$

and the corresponding decision rules for debt, default and renegotiation, $\{B(s), D(s)\}$. Lenders choose optimal consumption c_L and loans to the borrowing countries $\ell' = \{\ell'_i\}_{\forall i}$, taking as given the prices of bonds $Q = \{Q_i\}_{\forall i}$ and recoveries $\Phi = \{\Phi_i\}_{\forall i}$. The value function for
lenders is given by
\[v^L(\ell, s) = \max_{\{c_L, \ell' \text{ if } h_i=h'_i=0\}} \{ u(c_L) + \delta \sum_{y'} \pi(y', y) v^L(\ell', s') \}. \] (10)

Lenders maximize their value subject to their budget constraint that depends on the credit standing of each borrowing country and whether they repay,
\[c_L = y_L + \sum_i (1 - D_i(s)) \left((1 - h_i)(\ell_i - Q_i) + h_i \frac{\Phi_i(\ell_i)}{b_i} \right), \] (11)
the evolution of the endogenous states when they do not trade with each country,
\[\ell' = \begin{cases} \ell_i & \text{if } h'_i = 1 \\ 0 & \text{if } (h_i = 1 \text{ and } h'_i = 0) \end{cases} \text{ for all } i, \] (12)
and the evolution of the aggregate state (9).

Using the first order conditions and envelope conditions for the lenders’ problem, one can show that bond prices satisfy
\[Q_i = \sum_{s'} \left[m(s', s)(1 - D_i(s')(1 - \zeta_i(s'))) \right] \text{ for all } i, \] (13)
where \(\zeta_i(s') \) is the present value of recoveries and is defined recursively by
\[\zeta_i(s) = \sum_s m(s', s) \left[(1 - D_i(s')) \frac{\Phi_i(s')}{b_i} + D_i(s')\zeta_i(s') \right] \text{ for all } i. \] (14)

The bond prices in (13) and the values of recoveries in (14) are easily interpretable. The bond price contains two elements: the payoff in nondefault states \(D_i(s') = 0 \) and the payoff in default states \(D_i(s') = 1 \). The lender discounts cash flows by the pricing kernel \(m(s', s) \), and hence states are weighted by \(m(s', s) \). For every unit of loan \(\ell'_i \), the lender gets one unit in the nondefault states and the value of recovery \(\zeta_i(s') \) in default states. The recovery value is the expected payoff from defaulted debt the following period. It also contains two parts. If the
country renegotiates next period, \(D_i(s') = 0 \), and the value of recovery for every unit of loan is \(\Phi_i(s') \). If the country does not renegotiate, \(D_i(s') = 1 \), and the present value of recovery is the discounted value of future recovery given by \(\zeta_i(s') \). These future recovery values are weighted by the pricing kernel \(m(s', s) \), which implies that recovery values are weighted more heavily for states \(s' \) that feature a higher pricing kernel.

The bond price compensates the lender for any covariation between its kernel and the bond payoffs. If default happens in states when \(m(s', s) \) is low, the price contains a positive risk premia for low payoff in the default event. Moreover, if the value of recovery is low when \(m(s', s) \) is low, the price also contains positive risk premia for the covariation of recovery. The pricing kernel tends to be high when borrowing countries borrow large amounts and whey they default because these choices tend to lower \(c_L \).

2.3 Renegotiation Protocol

During renegotiation, countries renegotiate their debt with a committee of lenders. The renegotiation protocol we consider is one in which the committee of lenders bargains simultaneously with all the countries using Nash bargaining.\(^4\)

To build the Nash bargaining problem, consider each borrowing country \(i \) paying a candidate recovery value \(\hat{\phi}_i \) to lenders. The payoff for this country \(w_i \) depends on the aggregate state \(s \) and is defined as in (4) over arbitrary strategies \((b', d)\). The payoff for this borrowing country from renegotiation is then \(w_i(s, b', d; \hat{\phi}_i) \) for this candidate value of recovery \(\hat{\phi}_i \). The payoff for lenders from renegotiating and receiving candidate recoveries \(\{\hat{\phi}_i, \hat{\phi}_{-i}\} \) given aggregate state \(s \) and arbitrary strategies \((b', d)\) equals the value of the representative lender evaluated at the aggregate debt values and arbitrary strategies \(V_L(s, b', d; \hat{\phi}_i, \hat{\phi}_{-i}) \equiv v_L(b, s, b', d; \hat{\phi}_i, \hat{\phi}_{-i}) \).

If the parties do not reach an agreement, each country receives the value of renegotiation failure denoted by \(v^f_i(s) \). The value for renegotiation failure for a country with bad credit \(h_i = 1 \) is permanent financial autarky with \(y_i = y_i^d \) such that \(v^f_i(s_{\{h_i = 1\}}) = u(y_i^d) + \beta E[v^f_i(s'_{\{h_i = 1\}})] \). The value for renegotiation failure for countries with good credit \(v^f_i(s_{\{h_i = 0\}}) \) is the value arising in an environment with only one country borrowing from lenders. This value is characterized in the Appendix in the single-country Markov equilibrium. The value of renegotiation failure for lenders is consistent with those of the borrowing countries and hence it depends on aggregate state \(s \). When both countries have bad credit standing \(h_i = h_{-i} = 1 \), the value of renegotiation failure for lenders is permanent autarky such that \(V^f_L(s_{\{h_i = 1\} \forall i}) = u(y_L)/(1 - \delta) \).

\(^4\)This strict simultaneous bargaining protocol has often been used in industrial organization models of multfirms. See Dobson (1994) and Horn and Wolinsky (1988) for details.
If only one borrowing country has bad credit, then the value from renegotiation failure for lenders also arise from a single-country Markov equilibrium in the Appendix.

The Nash bargaining problem solves for the recovery values \(\{\phi_1, \phi_2\} \) that maximize the product of the surpluses of all parties such that

\[
\max_{\phi_1, \phi_2} \left[V_L(s,b',d;\phi_1,\phi_2) - V_f^L(s) \right]^{\theta_L} \prod_{i=1,2} \left[w_i(s,b',d;\phi_i) - v_i^f(s) \right]^{\theta_i}
\]

subject to all parties receiving positive weighted surplus, \(\theta_i(w_i(s,b',d;\phi_i) - v_i^f(s)) \geq 0 \) and \(\theta_L(V_L(s;\phi_1,\phi_2) - V_f^L(s)) \geq 0 \), and the law of motion for aggregate states (9). The bargaining weights for borrowing countries depend on the credit standing, \(\theta_i = \theta h_i \), such that only countries with bad credit and with the option to renegotiate have positive weights. For simplicity, we also impose zero recoveries for countries with good credit \(\phi_i(h_i = 0) = 0 \).

An important aspect of the renegotiation protocol we consider is the simultaneity in bargaining between the committee of lenders and all countries. This renegotiation protocol is reminiscent of the Brady renegotiation episode that included many countries in Latin America that were in default.

2.4 Functions for Bond Prices and Recoveries

The lenders’ problem and the renegotiation protocol determine the functions for bond prices and recoveries. First consider the case when both countries are in good credit standing, \(\{h_i = 0\}_{\forall i} \). Here, bond price functions \(q(s,b',d) = \{q_i(s,b',d)\}_{\forall i} \) solve the demand system determined by lenders’ first order conditions:

\[
q_i = \sum_{s'} [m(s',s;q,b',d)(1 - D_i(s')(1 - \zeta_i(s')))] \text{ for all } i,
\]

where the state tomorrow \(s' = \{b',h',y'\} \) depends on countries’ current strategies \(b',d \) and the lenders’ kernel \(m(s',s;q,b',d) \) is itself a function of prices, countries’ strategies, and current and future states.

Now consider the case when country \(i \) is in good credit standing and country \(-i \) is in bad credit standing, \(h_i = 0 \) and \(h_{-i} = 1 \). The bond price function for country \(i \) and the recovery function derived from (15) for country \(-i \), \(\{q_i(s,b',d),\phi_{-i}(s,b',d)\} \) solve

\[
q_i = \sum_{s'} [m(s',s;q,b',d)(1 - D_i(s')(1 - \zeta_i(s')))]
\]

This assumption is without loss. Any recovery payment from countries with \(h_i = 0 \) does not affect lenders’ consumption as seen from lenders’ budget constraint 11.
\[
\frac{\theta_i u'(y_i - \phi_i)}{w_i(s, b', d; \phi_i) - v_i'(s)} = \frac{\theta_L u'(c_L(s, b', d, q_i, \phi_i))}{V_L(s, b', d; q_i, \phi_i) - V_L'(s)},
\]

where the lender’s dividends and values are evaluated for every strategy and corresponding price and recovery.

Finally, when both countries are in bad credit standing, \(\{h_i = 1\}_{vi}\) recovery functions \(\phi(s, b', d) = \{\phi_i(s, b', d)\}_{vi}\) solve

\[
\frac{\theta_i u'(y_i - \phi_i)}{w_i(s, d; \phi_i) - v_i'(s)} = \frac{\theta_L u'(c_L(s, d; \phi_i, \phi_i))}{V_L(s, d; \phi_i, \phi_i) - V_L'(s)} \text{ for all } i.
\]

Finally, the risk free rate is defined in a standard way as the inverse of the expected kernel. We can define a risk free rate function over arbitrary strategies \((b', d)\) given state \(s\) as

\[
r_f(s, d, b') = \frac{1}{E m(s, s')}.
\]

where the prices and recoveries \(\{q_i, \phi_i\}_{vi}\) solve the equations (16), (17), and (18).

2.5 Equilibrium

We focus on recursive Markov equilibria in which all decision rules are functions only of the state variable \(s\).

Definition 2. A recursive Markov equilibrium for this economy consists of (i) countries’ policy functions for repayment, borrowing, and consumption, \(\{B(s), D(s), C(s)\}\), and values \(v(s)\); (ii) lenders’ policy functions for lending choices and consumption \(\{\ell'(\ell, s), c_L(\ell, s)\}\) and value function \(v^L(\ell, s)\); (iii) the functions for bond prices and recoveries \(\{q(s, b', d), \phi(s, b', d)\}\); (iv) the equilibrium prices of debt \(Q(s)\) and recovery rates \(\Phi(s)\); (v) the evolution of the aggregate state \(H(s)\); and (vi) the lenders’ and borrowers’ values in the case of renegotiation failure \(V_L'(s)\) and \(v^f(s)\) such that given \(b_0 = \ell_0:\)

1. Taking as given the bond price and recovery functions, the policy and value functions for countries satisfy the Markov partial equilibrium in definition (1).

2. Taking as given the bond prices \(Q(s)\), recoveries \(\Phi(s)\), and the evolution of the aggregate states \(H(s)\), the policy functions and value functions for the lenders \(\{\ell'(\ell, s), c_L(\ell, s), v^L(\ell, s)\}\) satisfy their optimization problem.
3. Taking as given countries’ policy and value functions, bond price and recovery functions \(\{q(s, b', d), \phi(s, b', d)\} \) satisfy (16), (17), and (18).

4. The prices of debt \(Q(s) \) clear the bond market for every country,

\[
\ell_i'(s) = B_i(s) \text{ for all } i.
\]

5. The recoveries \(\Phi(s) \) exhaust all the recovered funds,

\[
\phi_i(s, B(s), D(s)) = \Phi_i(s) \text{ for all } i.
\]

6. The goods market clears,

\[
c_1 + c_2 + c_L = y_1 + y_2 + y_L.
\]

7. The law of motion for the evolution aggregate states (9) is consistent with countries’ decision rules and shocks.

8. The values in the case of renegotiation failure for lenders and borrowers \(\{V^f_L(s), v^f_i(s) \forall i\} \) arise from the single-country Markov equilibrium (3).

3 Joint Defaults

In this section, we develop a simple two-period example to illustrate why countries have incentives to default together.

Consider a two-period version of our model with no uncertainty, where countries have identical endowment paths \(y \) and \(y' \). The lenders’ payoff function is \(u(c_L) = \frac{c_1 - \sigma - 1}{1 - \sigma} \). In period 1 the two countries with debt \(b_i \) and \(b_{-i} \) are in good credit standing and are deciding whether to repay their current debt or default on it. If countries repay their debt, they choose to borrow. In period 2, countries either repay their debts if they borrowed in period 1 or pay the recovery \(\phi' \) if they defaulted in period 1. In this example without uncertainty, in period 2 countries with good credit always repay and countries with bad credit always renegotiate, \(\{d'_i = 0\} \forall i \). Default does not happen in equilibrium in period 2 because default would be perfectly foreseen and the price of such a loan would be zero. Default incentives in period 2, however, limit the borrowing possibilities for period 1. In particular, in period 1 countries effectively face a borrowing limit \(\bar{b} \), which is the maximum repayment that countries would
be willing to make and equals the default penalty in period 2, $\bar{b} = y' - y^d$, where $y^d < y'$ is the income in case of default.

In this example, we assume that β is sufficiently less than δ such that it is optimal for countries to borrow to the limit in period 1. Hence, we abstract from the interdependence across countries in the borrowing decisions and focus on the interdependence in their repayment/default decisions. In this simplified environment, the relevant states for bond prices are the debt states b and the default decisions of both countries d, $\{q_i(b, d)\}_{\forall i}$. The relevant states for recovery tomorrow are the credit standing of both countries h', which is determined by d, $\{\phi'_i(h')\}_{\forall i}$. This example has these reduced states because we are assuming that endowments are constant for the countries. Here again, we label i as Home and $-i$ as Foreign.

In period 1, each country repays and sets $d_i = 0$ if the value of repayment is greater than the value of default:

$$u(y - b_i + q_i(b, d)\bar{b}) + \beta u(y' - \bar{b}) \geq u(y^d) + \beta u(y' - \phi'_i(h'))$$

for all i. (20)

It is apparent that default is more likely for country i when debt b_i is high, the price q_i is low, and the recovery tomorrow ϕ'_i is low. The default decisions of the two countries are linked because bond prices today and recoveries tomorrow depend on the decisions of both countries through the lenders’ problem.

It is useful to derive the home country’s default best response conditional on the foreign country’s default decision, $x_i^d(d_{-i}, b)$. The foreign default decision affects the home country’s future recovery ϕ'_i and current debt price q_i. A foreign default today decreases the home recovery ϕ'_i tomorrow because the surplus from renegotiating is higher when both countries renegotiate together, $\phi'_i(h'_{-i} = 1) < \phi'_i(h'_{-i} = 0)$. A foreign repayment increases the recovery because here the country borrows \bar{b} in period 1 and repays it in period 2. The \bar{b} payment gives the lender a high outside option during renegotiation with the home country, which in turn increases the equilibrium $\phi'_i(h_{-i} = 0)$. This force implies that a foreign default $d_{-i} = 1$ increases the right-hand side of equation (20) and thus increases the incentive to default for the home country.

Proposition 1. When two countries renegotiate simultaneously, recovery is smaller than when one country renegotiates alone: $\phi'_i(h'_{-i} = 1) < \phi'_i(h'_{-i} = 0)$

Proof. See Appendix II.

The second effect to consider is how a foreign default affects price q_i. This effect depends on the net capital flows that lenders forgo with the foreign default, $b_{-i} - q_{-i}\bar{b}$. The larger the foreign forgone capital flows, the more unfavorable the home bond price becomes with a
foreign default. The following proposition shows that capital flows are increasing with b_i, and the effect of a foreign default is increasingly detrimental for q_i, the higher b_i.

Proposition 2. *Home bond prices increase with the foreign country’s debt when the foreign country repays: $q_i(b, d)$ is increasing in b_i when $d_i = 0$.*

Proof. See Appendix II.

![Figure 1: Financial Contagion](image)

As in single-country default models, the home country will default when its current debt b_i is sufficiently high. It is useful to consider two home debt cutoffs $\hat{b}(b_i, d_i = 0)$ and $\hat{b}(b_i, d_i = 1)$, which depend on the foreign state and default decision. Home defaults when its debt level is above these two cutoffs.

The effects of a foreign default on the price q_i and the future recovery φ_i' imply that $\hat{b}(b_i, d_i = 0)$ is increasing in b_i and that $\hat{b}(b_i, d_i = 1)$ is independent of b_i. The ranking of $\hat{b}(b_i, d_i = 0)$ and $\hat{b}(b_i, d_i = 1)$ at $b_i = 0$ depends on the details of the utility of lenders. We assume that the effect of default on recovery is strong enough such that $\hat{b}(b_i = 0, d_i = 0) > \hat{b}(b_i = 0, d_i = 1)$.

To summarize this analysis, Figure 1(a) plots the home best responses for default as a function of its own debt level b_i and the foreign country’s debt level b_{-i} conditional on the foreign default decision d_{-i}. For sufficiently low (or high) levels b_i, the home country always repays (or defaults) independently of the foreign decision. For intermediate levels of b_i, however, the home country repays only if the foreign country repays. We label this region the *dependency zone*. By symmetry, the best response of the foreign country is identical to that of the home country, such that for intermediate levels of debt, the foreign country repays only if the home country repays.
Figure 1(b) illustrates the equilibrium in this example by considering both best response functions. The figure shows that in the dependency zones, both countries have joint repayments and joint defaults. Consider the dependency zone for country 1. When the foreign debt is low enough, the foreign repayment guarantees a home repayment. For high foreign debt, a foreign default guarantees a home default. When the foreign debt is in the intermediate region, our model features multiple equilibria: either both countries default or both countries repay. Nevertheless, even in this region the equilibrium features either joint defaults or joint repayments.

This example has highlighted the forces that in our model lead to joint defaults due to a common lender. The main idea is that foreign defaults lead to home defaults because foreign defaults lead to lower future recoveries and tighter current bond prices for the home country. Joint defaults and joint repayments occur for fundamental and self-fulfilling reasons. In this example, however, we have abstracted from debt dynamics and have considered an arbitrary level of initial debt. In practice, the level of debt is endogenous to countries’ decisions and their choices interact with defaults and renegotiations. In the following section, we analyze the general dynamic model with endogenous borrowing and default.

4 Quantitative Analysis

We solve the model numerically and analyze the debt market linkages across the two borrowing countries. We first describe the parametrization of the model and discuss the main model’s mechanisms by analyzing how the bond price function depends on the other country’s states and choices. We then present the correlation across countries between spreads, defaults, and recoveries. We perform an event analysis applied to Italy and Spain and find that our model can replicate the paths of bond spreads seen in the data and the high spreads during 2012. In a counterfactual analysis, we decompose this increase in spreads of each country into its own fundamentals and the other country’s crisis. Finally, we present sensitivity to tease out the source of contagion.

4.1 Parametrization

In this section we discuss the functional forms and parameter values used in the quantitative analysis. We apply our model to the European crisis and in particular to the experience of Italy and Spain and set the model parameters to reproduce data from these countries. We also use cross country data on recovery rates to inform other parameters.
Recovery Rates

Argue that bargaining power and default costs control this differential recovery rates

An important ingredient in our model is that countries are strategic during the renegotiation leading to recovery rates that vary with the number of countries renegotiating. We analyze the data on recovery rates by using the dataset in Cruces and Trebesch (2013) which complies recovery rates across 182 sovereign restructures for the period 1970-2010.

To examine the relation between recovery rates and the number of countries renegotiating, we group the years in the dataset based on the number of countries renegotiating in the year. The number of countries renegotiating in each year range from 1 country to 7 countries. We then compute the average recovery across these groups. Figure 2 plots the average recoveries as a function of the number of countries renegotiating. The figure shows that historically recoveries have been lower when many countries renegotiate ranging from about 0.7 when only 1 country renegotiates to about 0.5 when 7 countries renegotiate.

![Recovery Rates and Countries](image)

In our two country model, we can only distinguish recoveries in periods with single renegotiations from recoveries in periods with multiple country renegotiations. Using the cross country data, we define multiple country renegotiations periods as those years with two or more countries renegotiating and single country renegotiation periods as those years with only one country renegotiating. The difference in recoveries in the data between multiple and single country renegotiations is 16% while the overall average recovery rate is 60%.

6Cruces and Trebesch (2013) document multiple renegotiations for some of the default episodes. For these we consider only the final renegotiation of the episode.

7We found similar results using an alternative dataset of renegotiations provided by Benjamin and Wright.
Preferences and Technology We set the length of a period to one year. We assume
that the stochastic process for output for each borrowing country follows a log-normal AR(1)
process: \(\log(y_{t+1}) = \rho \log(y_t) + \varepsilon_{t+1} \) with \(E[\varepsilon^2] = \eta^2 \). The shock processes for the two
countries are identical and uncorrelated between each other. We discretize the shocks into
a nine-state Markov chain using a quadrature-based procedure (Tauchen and Hussey, 1991).
To set the volatility and persistence of this process we use linearly detrended real GDP for
Italy and Spain for the period of 1960 to 2015 and set these parameters to be the average
ones across the estimated for the two countries. We normalize the mean output for borrowing
countries and lenders to 1.

The utility function for the borrowing countries and lenders is \(u(c) = \frac{c^{1-\sigma}}{1-\sigma} \). We set the
risk aversion coefficient \(\sigma \) to 2, which is a common value used in real business cycle studies.

For the output cost of default, we follow Chatterjee and Eiyungor (2012) in assuming
that it is controlled by two parameters \(\{\lambda_1, \lambda_2\} \) as follows

\[
y^d = y - \max\{0, \lambda_1 y + \lambda_2 y^2\}.
\]

As discussed in Chatterjee and Eiyungor (2012), this state dependent cost of default
gives the model flexibility to generate reasonable levels of bond spreads.

Moment-Matching With these assumptions, the numerical specification of the model
requires values for four parameters: the lenders’ and borrowers’ discount rates \(\{\delta, \beta\} \), the
default costs \(\{\lambda_1, \lambda_2\} \), and the borrower’s bargaining parameter \(\theta \). We choose these four
parameters in a moment-matching exercise to best fit these four moments: an average risk
free rate 4%, a mean and standard deviation for bond spreads of 1.0% and 1.3%, an average
recovery of 60%, and a difference between recoveries in multiple-country renegotiations and
single-country renegotiations of 16%. Table 1 summarizes the parameter values. Spreads in
the model and data are defined as the difference between the country yield and the risk-free
rate \(spr = 1/q - r_f \). Recovery rates in the model are defined as the recovery relative to the
debt in default \(\phi/b \).

The mean risk free rate is calculated from the series for German 5-year bonds yields
since 1980. For spreads, we use annual series of Italian and Spanish 5-year Euro bonds since
2001. The mean and standard deviation for Italian spreads are 1.1 and 1.4 respectively. The
corresponding values for Spanish spreads are 0.9 and 1.2. The spreads moments we target
are the average ones across the values for the two countries.

We solve the model as the limit of a finite horizon model in which each period the

(2009). In this dataset, recovery rates are 13% lower in years with multiple country renegotiations.
Table 1: Parameter Values

<table>
<thead>
<tr>
<th>Parameter Type</th>
<th>Value</th>
<th>Target</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assigned parameters</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shocks process</td>
<td>$\rho = 0.935, \eta = 0.027$</td>
<td>Italy and Spain output</td>
</tr>
<tr>
<td>Risk aversion</td>
<td>$\sigma = 2$</td>
<td>RBC studies</td>
</tr>
<tr>
<td>Parameters from moment-matching</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output cost after default</td>
<td>$\lambda_1 = -0.168$</td>
<td>Italy and Spain spread:</td>
</tr>
<tr>
<td></td>
<td>$\lambda_2 = 0.186$</td>
<td>mean and standard deviation</td>
</tr>
<tr>
<td>Bargaining power</td>
<td>$\theta = 0.466$</td>
<td>Recovery:</td>
</tr>
<tr>
<td>Borrowers’ discount factor</td>
<td>$\beta = 0.845$</td>
<td>mean and conditional</td>
</tr>
<tr>
<td>Lenders’ discount factor</td>
<td>$\delta = 0.96$</td>
<td>Mean risk free rate</td>
</tr>
</tbody>
</table>

borrowing countries’ equilibrium strategies are Nash, taking as given the future decisions that are encoded in the future values. As in the simple example, for a certain region of the parameter space, our model features multiple equilibria. We select the equilibrium that maximizes the joint values for the two borrowing countries, $v_1 + v_2$. The numerical algorithm is explained in detail in the Appendix.

Table 2 reports the results from our moment-matching exercise. Overall, the model fits the data fairly well. In the model, the mean and volatility of the spread of 1.0% and 1.4% are similar to those in the data of 1.0% and 1.3%. The average recovery in the model of 60% is equal to the average in the data. Recoveries in the model during multiple country renegotiations are 17% smaller than single country renegotiations, close to the 16% difference found in the data. Finally, the risk free rate of 4% is similar in the model to the data.

Table 2: Moment-Matching Exercise

<table>
<thead>
<tr>
<th></th>
<th>Data</th>
<th>Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean spread</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>Volatility spread</td>
<td>1.3</td>
<td>1.4</td>
</tr>
<tr>
<td>Mean recovery</td>
<td>60</td>
<td>60</td>
</tr>
<tr>
<td>Multiple country recovery</td>
<td>-16</td>
<td>-17</td>
</tr>
<tr>
<td>Mean risk-free rate</td>
<td>4.0</td>
<td>4.1</td>
</tr>
</tbody>
</table>

Although the calibrated moments are jointly controlled by all parameters, certain parameters affect certain moments more. The mean and volatility of spreads are mainly controlled
by the borrowers’ discount factor and the output costs of default. The mean recovery and
the recovery difference are controlled by the bargaining power and by the output costs of
default. The mean risk-free rate is mostly determined by the lenders’ discount factor.

4.2 Model Mechanisms

Before comparing our model to other aspects of the European debt crisis, we explore the
model’s mechanisms for contagion. We focus on how the states and choices of one country,
the foreign country, affects the spreads, default, and recovery rates of the other country, the
home country.

We first illustrate the bond price schedules for the home country as a function of its
borrowing and output as well as the foreign country’s variables. We then show how average
spreads, default probabilities, and recovery rates vary for the home country when the foreign
country has high spreads, it defaults, or it renegotiates. Finally, we present impulse response
functions to a decrease in output in the foreign country and show that both foreign and home
spreads increase.

Spread Schedules. Each borrowing country i faces bond price schedules $q_i(s, b', d)$ that
depend on the aggregate states s as well as the borrowing and default choices for both
countries (b', d) because these variables affect both the expected loss from default and the
lenders’ pricing kernel. We define the spread schedule for each country as the difference
between the country yield and the risk free rate $1/q_i(s, b', d) - r_f(s, b', d)$.

We plot the spread schedules for the home country and show that foreign choices and
states affect the home schedules. The schedule is tight at home when the foreign country
defaults, borrows a large amount, or is in a recession.

Figure 3 plots the spread schedules for the home country $q_i(s, b', d)$ as a function of its
borrowing level, b'_i for states when both countries are in good credit $h_i = h_{-i} = 0$. For
the baseline schedule, we set the level of the output and debt states s for both countries to
be at the mean level, and the borrowing level for the foreign country to be at the optimal
level $b'_{-i} = B(s, d)$. As in standard in dynamic models of debt and default, spreads at home
increase with large home borrowing because default is more likely when debt is high.

We also graph the spread schedules for alternative choices of the foreign country keeping
the states as in the baseline. As the figure shows, when the foreign country borrows a larger
amount, 20% larger than optimal, the schedule at home tightens. When the foreign country
defaults, the schedule further tightens. When the foreign country is in a recession, with
output 5% lower than the baseline, the schedule at home is also tighter.
To illustrate the magnitudes of these changes, consider the home country borrowing 8\% of output. For the baseline setting, the spread is less than 1\%; if the foreign country defaults, the spread jumps to 20\%; if the foreign country enters a recession, the spread increases to about 7\%. The states and choices of the foreign country have large implications for borrowing rates and default probabilities at home.

The foreign country states and choices affect the home spread schedule because they change home country’s probability of defaulting the next period as well as its recovery conditional on defaulting.

As illustrated in the simple example of Section 3, a foreign default tends to induce a home default due to the strategic interactions during renegotiations and during borrowing and default. When the foreign country borrows a lot or is in a recession, its default probability rises which increases the home default probability. Moreover recoveries are lower when both countries default and renegotiate together. These two forces makes the spread schedule tighter for the home country with large foreign borrowing and a foreign recession.

An actual foreign default also tightens the home schedule, (and in fact this tighter schedule during a foreign default is one force that can lead to a home default as it becomes harder to roll over the debt.) The home spread schedule tightens with a foreign default because of two reasons: a rise in the lenders’ pricing kernel and a higher home default probability the next period. A foreign default lowers lenders’ consumption which increases the lenders’ kernel and hence the home spread. A foreign default this period can also lead to a higher home default probability the next period because the foreign country can choose to delay renegotiation such that both countries exploit the lower recovery rate arising from joint renegotiations.

Of course, the optimal borrowing and default choices for the home country change in response to different foreign strategies and states. As is typical in the models of debt and default, tight spread schedules lead to less borrowing. Spreads in equilibrium can increase or decrease in response to tighter spread schedules depending on the strength of the endogenous borrowing response. Very tight spread schedules, however, can also induce a default because they make it harder to roll over any existing debt. We analyze these equilibrium responses next.

Spreads, Default Probabilities, and Recoveries. We now report simulation results across the limiting distribution of states in our model. In Table 3, we report spreads, default probabilities, and recovery rates for the home country in the limiting distribution conditional on whether the foreign country is in good credit or bad credit. We divide the good credit
foreign states into states with low foreign spreads, defined as below the 25 percentile β, high foreign spreads, defined as above the 75 percentile β, or foreign default. Home spreads and probabilities of default are only observed in states when the home country is in good credit standing while recovery rates are only observed in states when the home country is in bad credit.

Table 3: Co-movement in Limiting Distribution

<table>
<thead>
<tr>
<th>Home</th>
<th>Foreign good credit</th>
<th>Foreign bad credit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Low spreads</td>
<td>High spreads</td>
</tr>
<tr>
<td>Spread</td>
<td>0.7</td>
<td>1.8</td>
</tr>
<tr>
<td>Default prob.</td>
<td>0.8</td>
<td>1.4</td>
</tr>
<tr>
<td>Recovery</td>
<td>67</td>
<td>71</td>
</tr>
</tbody>
</table>

Table 3 shows that when the foreign country has low spreads, spreads at home are also low and on average equal to 0.7%. When foreign spreads are high, home spreads are also high and on average equal to 1.8%. Default probabilities at home are also lower when the foreign country has low spreads relative when the foreign country has high spreads, 0.8% and 1.4% respectively. The default probability, however, jumps up to 47% when the foreign actually
defaults. Although financial contagion is sizable, a large fraction of variation in home spreads and default probabilities arise due to variation in domestic conditions. Consider for example, the case when the foreign probability of default is 100% which by construction is the case in the column labeled Default. Here, the home country is more likely to repay than to default; 53% relative to 47% of the time.

These co-movements arise in our model due to the shapes of the functions for spreads and recoveries. As illustrated above, the spread schedules are tight when the foreign country borrows a large amount or is in recession. These cases are associated with high foreign spreads in equilibrium. In response to the tight schedules, the home country has higher spreads and default probabilities in equilibrium. The very tight spread schedules during foreign defaults also induce home defaults.

Foreign states also have large effects on the recoveries that the home country pays. In states when the foreign country is repaying the debt and has low spreads recoveries are 67%; they are somewhat higher when the foreign country is repaying and has high spreads and equal to 71%. Recovery rates are the highest when the foreign country defaults and equal to 78% and they are the lowest and equal to 51% when the foreign country is in bad credit and they renegotiate together. The probability of renegotiation is 100% for the home country, except during periods when the foreign country defaults when it collapses to 1%. Default in the foreign country and non-renegotiation in the home country occur simultaneously because when the foreign country defaults and the home country is in bad credit, then the home country delays renegotiation such that both renegotiate together to pay a lower recovery.

The recovery functions play an important role for the co-movements. The recovery function is most lenient when the foreign country is also renegotiating because the borrowing countries exert here a higher bargaining power which leads to low recoveries. The recovery function for home is tightest when the foreign country defaults as this default increases the lenders’ marginal utility which increases the marginal lenders’ surplus from the renegotiation with the home country.

The model implications on the ranking of home recovery rates based foreign defaults and foreign renegotiations and on the simultaneity of default and renegotiations across countries is borne in cross country data. As we will see below in Section 5, the historical cross country data features recovery rates that are not only low when many countries renegotiate but also high when many countries default. These data also feature simultaneous defaults and renegotiations across countries.
Impulse responses. Having presented how spreads for one country depend on the other country on average, we now study these links by presenting impulse responses to shocks. We consider the responses of home and foreign spreads to a negative shock to the foreign output.

We construct the impulse response functions in our nonlinear model following Koop et al. (1996). We simulate 1000 paths for the model for 1000 periods. From periods 1 to 500, the aggregate shocks follow their underlying Markov chains. In period 501, the impact period, we reduce each of the values of foreign output y_{-i} across the paths by 3% which is about half of the standard deviation of the shock. From period 501 on, the aggregate shocks follow the conditional Markov chains. The impulse responses plot the average, across the 1000 paths, of the variables from period 501 to 512 conditional on countries being in good credit standing $h_i = h_{-i} = 0$ and not defaulting $d_i = d_{-i} = 0$. The output for the foreign and home countries are reported in percentage deviations from their value at $t = 500$, while the foreign and home spreads are in percentage points.

Figure 4: Impulse Responses

Figure 4 graphs the impulse response functions. In the left panel, we plot the output for the foreign and home country, which are our shocks. We label the impact period as 1 in the figure. In the impact period, foreign output drops by about 3%. From then on, output returns to its mean following its Markov chain. The home output remains unchanged throughout. In the right panel we plot the spreads for the foreign and home countries. In response to a decline in foreign output of 3%, foreign spreads spike 0.45% (45 basis points) on impact. In the period after the impact, foreign spreads fall substantially and return to their average level as output recovers. This negative co-movement between output and spreads is typical in debt and default models.
Most importantly, this figure shows that home spreads also rise in response to a decline in foreign output even though the home country faces no domestic shock. In the impact period, home spreads increase about 0.2% (20 basis points) and then quickly return to their average level. The increase in home spreads is about 40% that of the rise in spreads in the foreign country where shock originated.

4.3 Event Analysis

We have shown that our model features sizable contagion in debt market conditions that leads to co-movement in countries spreads. We now turn to comparing the model predictions for the spread co-movement during the debt crisis in Southern Europe. We focus our event analysis on Italy and Spain. We feed in the model a sequence of shock realizations that replicates the time paths of output in these two countries and then compare the resulting model’s time paths of spreads to data.

In Figure 5 we plot the data and model paths for output from 2006 to 2015. In the beginning of the event, output for Italy and Spain was above trend, peaking at about 5% and 10% above trend in 2007 and 2008. Starting in 2009, output for both countries fell substantially. From peak to trough output in Italy and Spain fell close to 10% and 15% respectively.

![Figure 5: Event Output](image)

For the model series in Figure 5, we follow a procedure similar to the one we used for the impulse responses and feed in shocks such that model replicates the output series in data. We simulate 1000 paths for 1000 periods. For the first 500 periods the aggregate shocks follow

8Output in the data is reported relative to a 2% trend.
their underlying Markov chains. Period 501 is the first period of the event, which corresponds to 2006. From 2006 on we feed in the model the sequence of shocks that best approximate the paths of output. Specifically for each period and country, we feed in the two grid points that are closest to the data, namely the closest grid point above data and below the data. The fraction of draws for each of these 2 grid points are based on the linear distance to the data point. The model output paths equal the average output across the simulated paths, which by construction replicate the data.

![Spread: Italy](image1.png) ![Spread: Spain](image2.png)

Figure 6: Event Spread

We now analyze the predictions for spreads. The left panel of Figure 6 plots the data and model time paths for spreads in Italy and the right panel plots those for Spain. The data paths illustrate the large increases in spreads for both countries from about 0 to about 5% for Italy and 4% for Spain during 2012. Spreads come down starting in 2013 to less than 1% in 2015.

The model paths for spreads replicate the data paths fairly well. During 2006 and 2007 spreads are close to zero for both countries in the model and in data. In 2009 spreads rise in the model as in data, although for the case of Italy, the magnitude of the increase in the model is larger than that observed in the data. Spreads in the model peak on 2012 as in the data. The model predicts a spread of about 4.5% for Italy and 4% for Spain, close to the magnitudes observed in the data. Finally, the model matches the data during 2014 and 2015 as spreads came down to similar magnitudes as in the data.

As the figure shows, spreads across these two countries are correlated in model and data. The model predicts a correlation of spreads during this event of 0.9, close to the data one of 0.95. The co-movement in spreads arises in the event because of two reasons. First,
domestic output fell substantially for both countries during this period as seen in Figure 5. This positive co-movement in output naturally generates co-movement in spreads because default probabilities rise for both countries when their outputs fall. Second, the contagion mechanisms in our model make spreads correlated as increases in default probability in one country induces a higher default probability in the other country.

We now turn to assess the contribution of contagion during this event by performing counterfactual experiments with our model. In these counterfactuals, we evaluate how spreads in Italy (or Spain) would have evolved during the event absent a debt crisis in Spain (or Italy). To eliminate the debt crisis in Spain (or Italy) in the counterfactual, we feed in a flat output path for Spain (or Italy) that does not contain a recession.

More precisely, for the first counterfactual, we feed in the event the exact same sequence of shocks to Italy as in the benchmark analysis, but hold the Spanish output at its mean throughout the event. In the second counterfactual, we feed in the shocks for Spain as in the benchmark while holding constant Italy’s output.

We then evaluate the resulting spreads for Italy and Spain and compare them with the benchmark model paths. The difference between the counterfactual spreads and the benchmark spreads provides a measurement for the contribution of the Spanish (Italian) debt crisis on the Italian (Spanish) spreads due to contagion.

In Figure 7 we compare the path of spreads in the benchmark with the path in the counterfactuals. Consider first the left panel where we plot the counterfactual spread paths for Italy and compare it with the benchmark path. The rise in spreads for 2009 in the counterfactual is very similar to the benchmark. In contrast, the counterfactual spread rises...
more modestly in 2012 reaching only 2%, about half of the increase in the benchmark. This results imply that the recession and debt crisis in Spain had a negative impact on Italy’s spreads during 2012, accounting for about half of the 2012 spreads. Finally, during 2015, Spain’s recovery helps Italy; absent Spain’s recovery spreads in Italy would had remained quite elevated.

The right panel in Figure 7 presents the counterfactual exercise for Spain. The increase in Spanish spreads in the counterfactual is also more muted, reaching about 2.5% in 2012 or about 2/3 of the level in the benchmark. This result implies that the recession and debt crisis in Italy account for about 1/3 of the elevated spreads in Spain. The smaller contribution of Italy on Spain is due to fact that Italy experienced a smaller decline output than Spain during the event. In 2015, the counterfactual spread is a bit more elevated than the benchmark.

In sum, our model implies that during the debt crises in Italy and Spain contagion through debt market linkages was sizable and a bit stronger from Spain to Italy. The Spanish debt crisis amplified the debt crisis in Italy and accounted for about 1/2 of the increase in spreads. The Italian debt crisis also affected the Spanish debt crisis and accounted for about 1/3 of the increase in spreads.

4.4 Comparative Statics

The contagion mechanisms arise in the model through three channels. First, lenders’ concavity generates a varying pricing kernel which is common for the borrowing countries. Second, the strategic renegotiations among borrowing countries generate correlated recoveries that lead to correlated defaults. Third, borrowing countries are also large and strategic with respect to movements of the pricing kernel.

In this section, we quantify the importance of these channels in generating our results by analyzing two stripped down versions of our model. We compute a linear model with risk neutral lenders where the pricing kernel is constant. The interactions between borrowing countries in this model arise only because of the strategic renegotiations and correlated recoveries. The results from the linear model assess the importance of this channel. The difference between the benchmark and the linear model highlights the role of a time varying pricing kernel for our results. We also compute a small country model, where we add a competitive small country that is otherwise identical to the home country to the benchmark model. The co-movements in debt market conditions between the small home country and the foreign country arise because of a common pricing kernel absent any strategic interactions. The results from the small country model quantify the importance of a common pricing kernel, while the differences between the benchmark and the small country measures the role
of all strategic interactions.

Table 4 reports the sensitivity results for the two versions of our model as well as for the benchmark model. The table reports means and co-movements of the variables of interest in the limiting distribution of each model. We also apply our event methodology of the previous section to the linear and small models and report in the table the predictions for the spreads of Italy and Spain during the debt crisis of 2012.

First consider the results for the linear model. With a linear pricing kernel, the bond price schedules for the two countries are more lenient because more borrowing does not increase the pricing kernel absent default. The more lenient schedules result in equilibrium spreads and default probabilities that are about 3 times higher than in the benchmark model. In contrast, the average recovery in the linear model is very close to the benchmark.

The linear model generates a positive correlation between home and foreign spreads of 0.13, which is about 1/5 of the correlation in the benchmark. The differences in recoveries in multiple renegotiations relative to single renegotiations of -0.18 is similar to the benchmark. These results indicate that the strategic renegotiation force by itself leads to a positive but modest correlation in spreads of the two countries.

Now consider the results from the small country model. In this model, the small country is not strategic and takes as given the evolution of the aggregate states and decisions of the two large borrowing countries arising from the benchmark model. These decisions affect the small country because they determine the evolution of the pricing kernel. We set the income shock of the small country model to be identical to that of the home country so that we can analyze how the home country would behave if it were small. The Appendix presents the small country problem in detail and makes it clear that this problem abstracts from the strategic game of default, renegotiation, and borrowing present in the benchmark model.

Table 4 reports the statistics for the small country across its limiting distribution of states. The average spread and default probability of the small country of 0.7% and 1.3% are smaller than those in the benchmark while the average recovery is similar to the benchmark. The correlation between the small home country spreads and the foreign spreads is positive but tiny and equal to 2%. The difference in recovery rates between multiple and single renegotiations is also minor. The small country model features lower default probabilities because all strategic forces of contagion are absent, including the strategic renegotiation as evident from the lack of difference in recoveries between multiple relative to single renegotiations. The results highlight that the impact from facing a common pricing kernel absent all strategic forces on debt linkages across countries is quite muted.

We can now use all these results to assess the importance of the three contagion channels
in delivering the positive correlation between home and foreign spreads in the benchmark of 63%. A common pricing kernel absent all strategic interactions is a minor factor in accounting for this correlation. The strategic renegotiations with differential recoveries alone is somewhat important for this correlation. The majority of the observed correlation, however, is driven by the interplay of strategic interactions in the default, borrowing, and renegotiation game in the context of a time varying pricing kernel.

Table 4 also compares the predictions of the linear and small country models for the debt crises in Italy and Spain. As in the event analysis of the previous section, here we also feed into the models the paths for output as in the data and we evaluate the implications for spreads during the crisis. We report in the table the prediction for spreads in 2012. All models predict an increase in spreads for both countries during 2012 because output decreased significantly during the crisis and in all models recessions are associated with increases in spreads. The magnitude of the increases, however, are smaller in the stripped down models.

Comparing the predictions for Italy and Spain during the crisis of the stripped down models relative to the benchmark, the linear and small country models generate smaller increases in spreads especially for Italy of 3.3% and 1.5% respectively. The stripped down models predict a more similar increase in spreads for Spain relative to the benchmark of 4% and 2%. The larger difference in predictions for Italy than for Spain in the stripped down models relative to the benchmark is consistent with the findings above that the contagion in the benchmark model from Spain to Italy is stronger than the contagion from Italy to Spain.

<table>
<thead>
<tr>
<th>Table 4: Decomposing Mechanism</th>
</tr>
</thead>
<tbody>
<tr>
<td>Limiting Distribution (%)</td>
</tr>
<tr>
<td>Means</td>
</tr>
<tr>
<td>Spread</td>
</tr>
<tr>
<td>Default probability</td>
</tr>
<tr>
<td>Recovery</td>
</tr>
<tr>
<td>Correlations home and foreign spreads (%)</td>
</tr>
<tr>
<td>Recovery Multiple-Single</td>
</tr>
<tr>
<td>Event 2012</td>
</tr>
<tr>
<td>Italy spread</td>
</tr>
<tr>
<td>Spain spread</td>
</tr>
</tbody>
</table>
5 Broader Empirical Results

The analysis above focused on the experiences of Italy and Spain during the recent European debt crisis and on the co-movement in bond spreads of these countries. In this section, we provide empirical support of additional implications of our model using a broader dataset on defaults, renegotiations, and recoveries. As described above and illustrated in Table 3, our model contains the following additional empirical predictions:

1. Default probabilities are higher when other countries are defaulting and lower when other countries are renegotiating.

2. Renegotiation probabilities are lower when other countries are defaulting and are higher when other countries are renegotiating.

3. Recovery rates are lower when other countries are renegotiating and higher when other countries are defaulting.

We show that these empirical implications are consistent with the historical experiences of countries. We assemble a panel dataset of 77 developing countries from 1970 to 2011, which include all the countries that have experienced a default event as defined by Standard and Poor’s (S&P) or are in the Cruces and Trebesch (2013) dataset in addition to all emerging market countries.

We measure whether the fraction of countries that are in default and the fraction of those that are renegotiating correlate with the probability that any one country i defaults or renegotiates at time t. Specifically, we run the following two linear probability regressions:

$$\text{default}_{it} = \alpha_i + \beta_D \text{Frac Default}_{it} + \beta_R \text{Frac Renegotiate}_{it} + \beta_{dy} \text{Debt/GDP}_{it} + \varepsilon_{it}.$$

The variable default_{it} is a binary and equals 1 if the country is in default according to S&P and zero otherwise. The variable $\text{renegotiation}_{it}$ equals 1 if a country that is in default renegotiates the debt and is no longer in default according to S&P and equals zero if it is in default without renegotiating the debt. The variables Frac Default_{it} and $\text{Frac Renegotiate}_{it}$ are the fraction of countries, not including i, that are in default or are renegotiating in the dataset. To smooth discrete changes of these variables, we use five-year moving averages. Finally, we include country fixed effects and the level of debt to output as additional controls. The variable Debt/GDP_{it} is equal to the external debt to GDP ratio and is taken from the World Development Indicators database.
The first additional implication of our theory predicts that in the default regression, \(\beta_D > 0 \) and \(\beta_R < 0 \). Moreover, as in standard default models, we expect \(\beta_{dy} > 0 \). The second additional implication of the theory predicts that in the renegotiation regression, \(\beta_D < 0 \) and \(\beta_R > 0 \). The country fixed effects absorb the average default frequency for each country.

A main channel in our model for the default/renegotiation comovement is the variation in recoveries. As already shown in the calibration of the model, recoveries are lower on average in years with multiple renegotiations. Here we extend this analysis and examine how recovery varies continuously with the two variables, \(\text{Frac Default}_{it} \) and \(\text{Frac Renegotiate}_{it} \) as well as with \(\text{Debt/GDP}_{it} \). We run a similar regression as follows:

\[
\text{recovery}_{it} = \alpha + \gamma_D \text{Frac Default}_{it} + \gamma_R \text{Frac Renegotiate}_{it} + \gamma_{dy} \text{Debt/GDP}_{it} + \varepsilon_{it}.
\]

Recovery\(_{it}\) equals the recovery rate estimates from the Cruces and Trebesch (2013) dataset.\(^9\) Our theory predicts that \(\gamma_D > 0 \) and \(\gamma_R < 0 \). Moreover, as in other models of renegotiation, our model predicts that \(\gamma_{dy} < 0 \).

Table 5: Cross-Country Regressions

<table>
<thead>
<tr>
<th></th>
<th>Default</th>
<th>Renegotiation</th>
<th>Recovery</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fraction in Default(_{it})</td>
<td>1.36***</td>
<td>-0.88***</td>
<td>0.92***</td>
</tr>
<tr>
<td>Fraction Renegotiate(_{it})</td>
<td>-2.13*</td>
<td>4.60**</td>
<td>-7.39***</td>
</tr>
<tr>
<td>Debt/GDP(_{it})</td>
<td>0.11***</td>
<td>-0.03*</td>
<td>-0.21***</td>
</tr>
<tr>
<td>Country fixed effects</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Adjusted (R^2)</td>
<td>0.28</td>
<td>0.06</td>
<td>0.34</td>
</tr>
<tr>
<td>Observations</td>
<td>2682</td>
<td>552</td>
<td>139</td>
</tr>
</tbody>
</table>

Table 5 reports the regression results. All standard errors are clustered at the country level. The coefficients on all the independent variables of interest have the sign predicted by the theory and are significant. The results in the default regression indicate that a 1% increase in the fraction of other countries in default increases the default probability of any one country by 1.4%, whereas an increase of 1% in the fraction of other countries renegotiating

\(^9\)We use the recoveries in Cruces and Trebesch (2013) during the final renegotiations. The results are similar if we use a weighted average recovery based on the partial renegotiations.
decreases the default probability by 2.2%. More indebted countries also are more likely to be in default. An increase in 10% in Debt/GDP increases the default probability by 1%. In the renegotiation equation, an increase of 1% in the fraction of countries in default decreases the renegotiation probability by 0.9%, whereas a 1% increase in the fraction of countries renegotiating increases the renegotiation probability by 4.6%. Debt to GDP has no effect on the renegotiation probability. The results in the recovery equation say that a 1% increase in the fraction of countries in default increases recovery by a bit less than 1%, whereas an increase in the fraction of renegotiators increases recovery by 7.4% from an average of 60%. Appendix IV contains additional robustness results as well as descriptive statistics for all the variables. It shows that the main results are maintained when controlling for world GDP as well as for selection issues.

The historical patterns across countries documented in this section are consistent with our theory. Countries default together and renegotiate together because recoveries are more favorable during multiple renegotiations.

References

Appendix I. Auxiliary Models

One Large Country Model

Let $v_{i,\text{fail}}^L(\ell, s_i)$ be the value to the lender when trading only with country i:

$$v_{i,\text{fail}}^L(\ell, s_i) = \max_{\{d_L, \ell' \text{ if } h_i=h_i'=0\}} \left\{ g(c_L) + \delta \sum_{y_i'} \pi(y_i', y_i) v_{i,\text{fail}}^L(\ell', s_i') \right\},$$ \hspace{1cm} (21)

subject to its budget constraint,

$$c_L = y_L + [1 - D_i(s)] \left((1 - h_i)(\ell - Q_i\ell') + h_i \frac{\Phi_i\ell}{b_i} \right),$$

the evolution of the endogenous states akin to equation (12), and a law of motion of aggregate states for the case that country i is dealing alone with lenders $s_i' = H_{\text{fail}}(s_i)$. The optimal solution of the lender is given by $c_{L,\text{fail}}(\ell, s_i)$ and $\ell_{\text{fail}}'(\ell, s_i)$.

The problem for country i in the case when it trades alone with the lenders is similar to one described in Section 2.1 with three main differences. First, its aggregate states are only $s_i = \{b_i, h_i, y_i\}$. Second, the price function $q_{i,\text{fail}}(s_i, b_i', d_i)$ and recovery $\phi_{i,\text{fail}}(s_i, b_i', d_i)$ depend only on its own states and its own strategies. Third, the intraperiod Nash game between countries is absent. The decision rules for this problem are labeled $B_{i,\text{fail}}(s_i)$ for borrowing and $D_{i,\text{fail}}(s_i)$ for repayment. These decisions in turn determine the evolution of the aggregate state $s_i' = H_{\text{fail}}(s_i)$.

When $h_i = 0$, the price function $q_{i,\text{fail}}(s_i, b_i', d_i)$ solves

$$q_{i,\text{fail}} = \sum_{s_i'} m_{\text{fail}}(s_i', s_i; q_{i,\text{fail}}, b_i', d_i) [1 - D_{i,\text{fail}}(s_i')(1 - \zeta_{i,\text{fail}}(s_i'))].$$ \hspace{1cm} (22)

Here, the decision rules of the country and the lender’s kernel are those corresponding to the problem when country i trades alone with the lender.

When the country is in bad credit standing and chooses to renegotiate, the recovery function $\phi_{i,\text{fail}}(s_i, d_i)$ solves

$$\frac{\theta u'(y_i - \phi_{i,\text{fail}})}{[v_i(s_i; \phi_{i,\text{fail}}) - v_{i,\text{aut}}(y_i)]} = \frac{(1 - \theta)g'(s_i, \phi_{i,\text{fail}}, d_i)}{[V^L(s_i, \phi_{i,\text{fail}}, d_i) - V_{\text{aut}}^L]}. \hspace{1cm} (23)$$

We now describe the equilibrium

Definition 3. A single-country recursive Markov equilibrium consists of (i) the country i’s policy functions for repayment, borrowing, and consumption, $\{B_{i,\text{fail}}(s_i), D_{i,\text{fail}}(s_i), C_{i,\text{fail}}(s_i)\}$,
and values $v_{i,fail}(s_i)$; (ii) lenders’ policy functions for lending choices and dividends $\{\ell'_{fail}(\ell, s_i), \ell_{L,fail}(\ell, s_i)\}$ and value function $v_{L,i,fail}(\ell, s_i)$; (iii) the functions for bond prices and recoveries $\{q_{i,fail}(s_i, b'_i, d_i), \phi_{i,fail}(s_i, d_i)\}$; (iv) the equilibrium prices of debt $Q_{i,fail}(s_i)$ and recovery rates $\Phi_{fail}(s_i)$; (v) the evolution of the aggregate state $H_{fail}(s_i)$ such that given $b_0 = \ell_0$:

• Taking as given the bond price and recovery functions, the country i’s policy functions for repayment, borrowing, and consumption, $\{B_{i,fail}(s_i), D_{i,fail}(s_i), C_{i,fail}(s_i)\}$, and values $v_{i,fail}(s_i)$ solves country i’s problem when it trades alone with the lenders.

• Taking as given the bond prices $Q_{fail}(s_i)$, recoveries $\Phi_{fail}(s_i)$, and the evolution of the aggregate states $H_{fail}(s_i)$, the policy functions and value functions for the lenders $\{\ell'_{fail}(\ell, s_i), \ell_{L,fail}(\ell, s_i)\}$, $v_{L,i,fail}(\ell, s_i)$ satisfy lenders’ optimization problem in (21).

• Taking as given countries’ policy and value functions, bond price and recovery functions $\{q_{i,fail}(s_i, b'_i, d_i), \phi_{i,fail}(s_i, d_i)\}$ satisfy (22) and (23).

• The prices of debt $Q_{fail}(s_i)$ clear the bond market, $\ell'_{i,fail}(b_i, s_i) = B_{i,fail}(s_i)$.

• The recoveries $\Phi_{i,fail}(s_i)$ exhaust all the recovered funds: $\phi_{i,fail}(s_i, D_{i,fail}(s_i)) = \Phi_{fail}(s_i)$.

• The law of motion for the evolution aggregate states $H_{fail}(s_i)$ is consistent with country i’s decision rules and shocks.

Small Country Model

The model for the small country is a one-country competitive version of the benchmark model. This model is studied in Yue (2010), but here the risk-free rate is time varying and depends on the evolution of the aggregate states. The recursive problem for the small country takes as given the law of motion of aggregate states (9). Given the individual state (b_s, y_s, h_s) and aggregate state s, the small country’s problem is given by

$$v_s(b_s, y_s, h_s = 0, s) = \max_{d_s = \{0, 1\}} \{(1 - d_s)v^0_s(b_s, y_s, h_s = 0, s) + d_s v^1_s(b_s, y_s, h_s = 0, s)\}.$$

If it repays, the small country chooses optimal consumption and savings:

$$v^0_s(b_s, y_s, h_s = 0, s) = \max_{c_s, b'_s} \{u(y_s - b_s + q_s(b'_s, y_s, s)b'_s) + \beta Ev_s(b'_s, y'_s, h'_s = 0, s')\}.$$
If it defaults, the small country’s value is given by

\[v_s^1(b_s, y_s, h_s = 0, s) = \{u(y_s^d) + \beta E v_s(b_s, y_s', h_s' = 1, s')\}. \tag{24} \]

If the country is in bad credit standing, it chooses whether to renegotiate according to

\[v_s(b_s, y_s, h_s = 1, s) = \max_{d_s\in\{0,1\}} \{(1 - d_s) v_s^0(b_s, y_s, h_s = 1, s) + d_s v_s^1(b_s, y_s, h_s = 1, s)\}. \]

Its renegotiation value depends on the recovery \(\phi_s(b_s, y, s) \) and is given by

\[v_s^0(b_s, y_s, h_s = 1, s) = u(y_s - \phi_s(b_s, y, s)) + \beta E v_s(0, y_s', h_s' = 0, s'). \]

Without renegotiation, its value is the same as the default value given by equation (24).

In equilibrium, bond price and recovery functions for the small country satisfy the following equations:

\[q_s = E [1 - d_s'(b_s', y_s', h_s', s')(1 - \zeta_s(b_s', y_s', h_s', s'))] E m(s', s), \]

\[\zeta_s(b_s, y_s, h_s, s) = E[(1 - d_s(b_s, y_s', h_s', s')) \frac{\phi_s(b_s, y_s', h_s', s')}{b_s} + d_s(b_s, y_s', h_s', s') \zeta_s(b_s, y_s', h_s', s')] E [m(s', s)], \]

\[1 - \theta = \frac{\theta u'(y_s - \phi_s)}{[v_s^0(b_s, y_s, h_s = 1, s; \phi_s) - v_{aut}(y_s)]}, \]

where \(m(s', s) \) is the equilibrium pricing kernel from the two-big-country problem.

Appendix II. Proofs

Proof for Proposition 1. Let us call \(\phi_2^i \) and \(\phi_2^{-i} \) the recovery values for country \(i \) and \(-i\) respectively when the two countries renegotiate jointly with lenders, and \(\phi_1^i \) be the recovery value when country \(i \) renegotiates alone with lenders. Nash bargaining implies that \(\phi_2^i \) satisfies

\[\frac{\theta u_c(y_2^i - \phi_2^i)}{u(y_2^i - \phi_2^i) - u(y_2^i)} = \frac{(1 - \theta)g'(y_L + \phi_2^i + \phi_2^{-i})}{g(y_L + \phi_2^i + \phi_2^{-i}) - g(y_L)} \leq \frac{(1 - \theta)g'(y_L + \phi_2^i + \phi_2^{-i})}{g(y_L + \phi_2^i + \phi_2^{-i}) - g(y_L)}. \]

The inequality holds because \(g \) is an increasing function and \(\phi_2^{-i} \geq 0 \). Suppose the following condition holds:

\[\frac{(1 - \theta)g'(y_L + \phi_2^i + \phi_2^{-i})}{g(y_L + \phi_2^i + \phi_2^{-i}) - g(y_L + \phi_2^{-i})} \leq \frac{(1 - \theta)g'(y_L + \phi_2^i + \bar{b})}{g(y_L + \phi_2^i + \bar{b}) - g(y_L + \bar{b})}. \tag{25} \]
Then, the recovery under two borrowing countries \(\phi^i_2 \) satisfies

\[
\frac{\theta u_c(y^u_2 - \phi^i_2)}{u(y^u_2 - \phi^i_2) - u(y^d)} \leq \frac{(1 - \theta)g'(y_L + \phi^i_2 + \bar{b})}{g(y_L + \phi^i_2 + b) - g(y_L + b)},
\]

where recovery alone \(\phi^i_1 \) satisfies

\[
\frac{\theta u_c(y^u_2 - \phi^i_1)}{u(y^u_2 - \phi^i_1) - u(y^d)} = \frac{(1 - \theta)g'(y_L + \phi^i_1 + \bar{b})}{g(y_L + \phi^i_1 + b) - g(y_L + b)}.
\]

It is easy to show by contradiction that \(\phi^i_2 \leq \phi^i_1 \) because \(u \) and \(g \) are increasing and concave.

Note that concavity is not necessary to guarantee \(\phi^i_2 \leq \phi^i_1 \).

We still need to show that inequality (25) holds. Given \(\bar{b} \geq \phi^i_2 \), we need to show that the function \(f(x) = \frac{g'(y_H + x)}{g(y_H + x) - y_L} \) with \(y_H = y_L + \phi^i_2 \geq y_L \) weakly increases with \(x \). Under the assumption that \(g(c) = c^{1-\alpha}/(1 - \alpha) \), we can write \(f(x) \) as

\[
f(x) = \frac{-\alpha(1 - \alpha)}{\Delta^2} \left\{ 1 - \left(\frac{y_H + x}{y_L + x} \right)^{\alpha - 1} + \frac{1 - \alpha}{\alpha} \left(1 - \left(\frac{y_H + x}{y_L + x} \right)^\alpha \right) \right\}
\]

where \(\Delta = (y_H + x)^\alpha \left[(y_H + x)^{1-\alpha} - (y_L + x)^{1-\alpha} \right] \). It is easy to show that \(f'(x) \geq 0 \). Q.E.D.

Proof for Proposition 2. Conditional on repaying, country \(i \)'s net capital flow to lenders increases with its initial debt holding \(b_i \). To see this, let \(\omega_L(b_{-i}, d_{-i}) \) and \(\omega'_L(d_{-i}) \) be the lenders' wealth from trading with the other country \(-i \) in period 1 and period 2, respectively. In particular,

\[
\omega_L(b_{-i}, d_{-i}) \equiv y_L + (1 - d_{-i})TB(b_{-i}).
\]

We can define the net capital flow from country \(i \) as \(TB_i = b_i - q_i\bar{b} \), where \(q_i \) solves

\[
q_i = \frac{\delta g'[\omega'_L(d_{-i}) + \bar{b}]}{g'[\omega_L(b_{-i}, d_{-i}) + b_i - q_i b_i]}.
\]

It is easy to show that

\[
\partial TB_i/\partial b_i = \frac{g'[(\omega_L(d_{-i}) + b_i - q_i\bar{b}) - q_i \omega_L(b_{-i}, d_{-i}) + b_i - q_i\bar{b}]b}{g'[(\omega_L(b_{-i}, d_{-i}) + b_i - q_i\bar{b}) - q_i \omega_L(b_{-i}, d_{-i}) + b_i - q_i\bar{b})b} \geq 0.
\]

Higher \(b_{-i} \) therefore leads to higher net capital flow \(TB_{-i} \) and so higher lenders' wealth from country \(-i \) since \(\omega_L(b_{-i}, d_{-i}) \). The bond price of country \(i \) thus increases with \(b_{-i} \) conditional on country \(-i \) repaying.
Appendix III. Computational Algorithm

We first discretize the endowment space \(y = (y_1, y_2) \) into 81 pairs using Tauchen-Hussey (1991) method and the debt space \(b = (b_1, b_2) \) into 225 pairs. We then compute the model as the limit of a finite horizon model with \(T \) periods. We start with a large enough \(T \) and solve the problem backwardly until the value functions and decision rules converge. In each period, we compute two models: a single-country model and a two-country model. We need to compute the first model, since its equilibrium values are used in solving for the Nash bargaining allocations of the second model.

We now describe the algorithm for a generic period \(t \leq T \).

1. Single-country model.

 In this computation, we take as given the following functions from period \(t + 1 \): country \(i \)'s value function and default decision \(\{v^i_{t+1}(s), D^1_{i,t+1}(s)\} \), discounted value of future recovery \(\zeta^i_{t+1}(s) \), and lenders’ consumption and value function when dealing with country \(i \) alone \(\{c^L_{i,t+1}(s), V^L_{i,t+1}(s)\} \) for \(i = 1, 2 \) and \(s = \{(b_i, h_i, y_i)\}_{i=1,2} \). We then update these function for period \(t \) using the optimal decisions from this period.

 Let’s first construct expected future value function \(W \) and expected repayment function \(\psi \) on the grids of \((b', s)\). They both depend on the current state \(s \) and are a function of debt choice \(b' \):

 \[
 W^1_{i,t+1}(b', s) = \sum_{y'} \pi(y'|y)v^i_{t+1}(s')
 \]

 \[
 \psi^1_{i,t+1}(b', s) = \sum_{y'} \pi(y'|y)g^L[c^L_{i,t+1}(s')] \left\{ (1 - D^1_{i,t+1}(s')) + D^1_{i,t+1}(s')\zeta^i_{t+1}(s') \right\}.
 \]

 With these two functions, we can solve the single-country model at period \(t \). In particular, we solve it in two cases: when the country has good credit standing and when the country has bad credit standing.

 For the country in good credit standing, we solve its problem in two steps. In the first step, we find the optimal borrowing decision conditional on repaying. In the second step, we find the optimal default decision taking as given the optimal borrowing decision and repaying value from the first step.

\[\text{For convenience of notation, we write the state space of the single-country model the same as that of the two-country model. Of course, in the single-country model, country } i \text{'s state } (b_{-i}, h_{-i}, y_{-i}) \text{ does not affect country } i \text{'s problem.}\]
1.1 Borrowing decision. Taking as given expected future value function W and expected repayment function ψ, we solve the following optimization problem

$$v_{i,t}^{1,r}(s) = \max_{b'} u(y_i - b_i + qb') + \beta W_{i,t+1}^1(b', s)$$

s.t. $qg'[y_i + b_i - qb'] = \delta \psi_{i,t+1}^1(b', s).$ \hspace{1cm} (26)

Note that we do not use grid-search method to solve for the optimal b'. Instead, we solve b' continuously by interpolating the functions of $W_{i,t+1}^1(b', s)$ and $\psi_{i,t+1}^1(b', s)$.

Let $B_{i,t}^{1,r}(s)$ and $Q_{i,t}^1(s)$ be the optimal borrowing decision and the corresponding equilibrium bond price satisfying equation (26) when $b' = B_{i,t}^{1,r}(s)$, respectively.

1.2 Default decision. It’s a zero-one choice depending on which value is larger, repaying or defaulting:

$$v_{i,t}^1(s) = \max_d (1-d) v_{i,t}^{1,r}(s) + d v_{i,t}^{1,d}(s),$$

with the default value is given by $v_{i,t}^{1,d}(s) = u(y_i^d) + \beta W_{i,t+1}^1(s)$. Let $D_{i,t}^1(s)$ be the optimal default decision.

For the country in bad-credit standing, we solve it in two steps as well. In the first step, we solve the optimal recovery for each grid s. We then figure out the optimal renegotiation decision taking as given the optimal recoveries.

1.3 Recovery function. For each grid s with $h_i = 1$, the optimal recovery ϕ satisfies the following equation:

$$
\frac{(1-\theta)g'[y_L + \phi]}{g(y_L + \phi) + \delta E V_{i,t+1}^L(s') - V_{i,t+1}^{aut}(s)} = \frac{\theta u_c(y_i - \phi)}{u(y_i - \phi) + \beta W_{i,t+1}^1(0, s) - v_{i,t}^{aut}(y)}
$$

where the autarky value for lenders is given by $V_{i,t+1}^{aut} = g(y_L) + \delta V_{i,t+1}^{aut}$ and the autarky value for the country is given by $v_{i,t}^{aut}(y) = u(y_i^d) + \beta \sum y' \pi(y'|y)v_{i,t+1}^{aut}(y')$. The optimal recovery is denoted as $\phi_{i,t}^1(s)$.

1.4 Renegotiation decision. Taking as given the recovery schedule $\phi_{i,t}^1(s)$, the country makes zero-one choice over renegotiation:

$$v_{i,t}^1(s) = \max_d (1-d)[u(y_i - \phi_{i,t}^1(s))] + \beta W_{i,t+1}^1(0, s)] + d[u(y_i^d) + \beta W_{i,t+1}^1(b, s)].$$

Let $D_{i,t}^1(s)$ be the optimal non-renegotiating decision.
We can now evaluate lenders’ consumption at period t according to

$$c_{L,i,t}^L(s) = y_L + (1 - D_{1,i,t}^1(s)) [(1 - h_i) (b_i - Q_{1,i,t}^1(s) B_{1,i,t}^r(s)) + h_i \phi_{1,i,t}^1(s)].$$

The value of the lender is given by

$$V_{L,i,t}^L(s) = g(c_{L,i,t}^L(s)) + \delta \sum_{y'} \pi(y'|y) V_{L,i,t+1}(s'),$$

where the future debt in s' for country i is $B_{1,i,t}^1(s)$. In particular, $B_{1,i,t}^1(s) = B_{1,i,t}^r(s)$ if $h_i = 0$ and $D_{1,i,t}^1(s) = 0$, $B_{1,i,t}^1(s) = 0$ if $h_i = 1$ and $D_{1,i,t}^1(s) = 0$, and $B_{1,i,t}^1(s) = b_i$ if $D_{1,i,t}^1(s) = 1$.

The discounted value of future recovery at period t is given by

$$\zeta_{1,i,t}^L(s) = \delta \sum_{y'} \pi(y'|y) g'(c_{L,i,t+1}(s')) [(1 - D_{1,i,t+1}^1(s')) \phi_{1,i,t+1}^1(s') + D_{1,i,t+1}^1(s') \zeta_{1,i,t+1}(s')].$$

2. Two-country model.

We take as given the following functions from period $t+1$: country i’s value function and default decision $\{v_{i,t+1}(s), D_{i,t+1}(s)\}$, discounted future value of recovery $\zeta_{i,t+1}(s)$, and lenders’ consumption and value function when dealing with country i alone $\{c_{L,t+1}(s), V_{L,t+1}(s)\}$ for $i = 1, 2$ and $s = \{(b_i, h_i, y_i)\}_{i=1,2}$. We then update these function for period t using the optimal decisions from this period.

We solve this model in two steps. In the first step, taking as given default/renegotiation choices of the two countries, we solve the optimal borrowing decisions and update the value functions for repaying, defaulting, renegotiating and non-renegotiating. In the second step, we find the optimal default/renegotiation decision taking as given the optimal borrowing decisions in the first step.

2.1 Borrowing decisions and value functions. We solve three cases in this step.
• Case 1. Both countries are in good credit standing. We solve three sub cases.

 – Case 1.1. Both choose not to default.

 In this case, taking as given \(\{W_{i,t+1}, \psi_{i,t+1}\}_{i=1,2} \), we look for the fixed point \(\{B_{i,t}(s, d), B_{-i,t}(s, d)\} \) that satisfies for each \(i = 1, 2 \)

 \[
 B_{i,t}(s, d) = \arg\max_{\{b'_i, q_i\}} w_{i,t}(s, (b'_i, B_{-i,t}(s, d)), d),
 \]

 subject to the following conditions:

 \[
 w_{i,t}(s, b'_i, d) = u(y_i - b_i + q_i b'_i) + \beta W_{i,t+1}(b', s), \\
 q_i g'[y_L + (b_i - q_i b'_i) + (1 - d_i)(b_{-i} - q_{-i} b'_{-i})] = \delta \psi_{i,t+1}(b', s), \\
 q_{-i} g'[y_L + (b_i - q_i b'_i) + (1 - d_i)(b_{-i} - q_{-i} b'_{-i})] = \delta \psi_{-i,t+1}(b', s).
 \]

 Let the equilibrium bond prices be \(Q_{i,t}(s, d) \) for \(i = 1, 2 \).

 – Case 1.2. Country \(i \) repays but country \(-i \) defaults.

 We only need to solve country \(i \)'s optimal debt

 \[
 B_{i,t}(s, d) = \arg\max_{\{b'_i, q_i\}} w_{i,t}(s, b'_i, d) \\
 s.t. \quad w_{i,t}(s, b'_i, d) = u(y_i - b_i + q_i b'_i) + \beta W_{i,t+1}(b', s), \\
 q_i g'[y_L + (b_i - q_i b'_i)] = \delta \psi_{i,t+1}(b', s).
 \]

 The value of country \(-i \) is given by

 \[
 w_{-i,t}(s, B_{i,t}(s, d), d) = u(y_{d_i}^d) + \beta W_{-i,t+1}((B_{i,t}(s, d), b_{-i}), s).
 \]

 Let the equilibrium bond prices be \(Q_{i,t}(s, d) \) for \(i = 1, 2 \).

 – Case 1.3. Both choose to default.

 The value functions of default are given by, for each \(i \)

 \[
 w_{i,t}(s, b, d) = u(y_i^d) + \beta W_{i,t+1}(b, s). \quad (27)
 \]

• Case 2. Country \(i \) is in good credit standing and country \(-i \) is in bad credit standing. We solve four sub cases here.

 – Case 2.1. Both choose to repay.

 In this case, \(d_{i,t} = d_{-i,t} = 0 \). We only need to solve country \(i \)'s optimal
debt with $b'_{-i} = 0$:

$$B_{i,t}(s,d) = \arg\max_{b_i, q_i, \phi_{-i}} w_{i,t}(s, b_i', d)$$

s.t.

$$w_{i,t}(s, b_i', d) = u(y_i - b_i + q_i b_i') + \beta W_{i,t+1}((b_i', 0), s),$$

$$q_i g'[y_L + (b_i - q_i b_i')] = \delta \psi_{i,t+1}((b_i', 0), s)$$

$$\theta u'(y_i - \phi_{-i}) - \frac{(1 - \theta) g'(s, q_i, \phi_{-i}, b_i', d)}{v_{-i}(s; \phi_{-i}) - v_{-i,aut}(y_{-i})} = \frac{V^L_t(s, q_i, \phi_{-i}, b_i', d) - V^L_{fail}(s_i)}{V^L_t(s, q_i, \phi_{-i}, b_i', d) - V^L_{fail}(s_i)}.$$

Country $-i$'s value is given by

$$w_{-i,t}(s, (B_{i,t}(s,d), 0), d) = u(y_{-i} - \phi_{-i}) + \beta W_{-i,t+1}((B_{i,t}(s,d), 0), s).$$

Let the optimal recovery be $\phi_{-i,t}(s,d)$ and the equilibrium bond price be $Q_{i,t}(s,d)$.

- Case 2.2. Country i repays but country $-i$ chooses not to renegotiate. Country i's optimal debt and value solve the following problem: We only need to solve country i's optimal debt with $b'_{-i} = b_{-i}$:

$$B_{i,t}(s,d) = \arg\max_{b_i, q_i} w_{i,t}(s, b_i', d)$$

s.t.

$$w_{i,t}(s, b_i', d) = u(y_i - b_i + q_i b_i') + \beta W_{i,t+1}((b_i', b_{-i}), s),$$

$$q_i g'[y_L + (b_i - q_i b_i')] = \delta \psi_{i,t+1}((b_i', b_{-i}), s)$$

Country $-i$'s value is given by

$$w_{-i,t}(s, (B_{i,t}(s,d), b_{-i}), d) = u(y_{-i}^d) + \beta W_{-i,t+1}((B_{i,t}(s,d), b_{-i}), s).$$

Let the equilibrium bond prices be $Q_{i,t}(s,d)$.

- Case 2.3. Country i defaults but country $-i$ renegotiates.

The recovery function ϕ_{-i} solves the following equation:

$$\frac{\theta u'(y_i - \phi_{-i})}{v_{-i}(s; \phi_{-i}) - v_{-i,aut}(y_{-i})} = \frac{(1 - \theta) g'(s, \phi_{-i}, b_i', d)}{V^L_t(s, \phi_{-i}, b_i', d) - V^L_{fail}(s_i)}.$$

Let the optimal recovery be $\phi_{-i,t}(s,d)$. With $b' = (b_i', b_{-i}')$, $b_i' = b_i$ and
\(b'_{-i} = 0 \), the value functions of the two countries are given by:

\[
\begin{align*}
 w_{i,t}(s, b', d) &= u(y_i^d) + \beta W_{i,t+1}(b', s) \\
 w_{-i,t}(s, b', d) &= u(y_{-i} - \phi_{-i,t}(s, d)) + \beta W_{-i,t+1}(b', s)
\end{align*}
\]

- Case 2.4. Both choose not to repay.

The values of the two countries are updated according to equation (27).

- Case 3. Both countries are in bad credit standing.

The two recovery functions solve the Nash bargaining problem jointly. Otherwise, the two recovery functions are independent of each other.

2.2 Default/renegotiation decisions.

Taking as given the optimal borrowing decisions and value functions from Step 2.1, we find the equilibrium default/renegotiation decisions \(\{D_{i,t}(s), D_{-i,t}(s)\} \) that solve jointly

\[
\begin{align*}
 D_{i,t}(s) &= \arg\max_{d_{i,t}} w_{i,t}(s; d_{i,t}, D_{-i,t}(s), B(d_{i,t}, D_{-i,t}(s))) \\
 D_{-i,t}(s) &= \arg\max_{d_{-i,t}} w_{-i,t}(s; D_{i,t}(s), d_{-i,t}, B(D_{i,t}(s), d_{-i,t}))
\end{align*}
\]

If there are multiple pairs of \((D_{i,t}, D_{-i,t}) \) as equilibrium for a state \(s \), we take the pair that maximizes \(w_{i,t}(s, D_{i,t}(s), B_{i,t}(s, D_{i,t}(s))) + w_{-i,t}(s, D_{-i,t}(s), B_{-i,t}(s, D_{-i,t}(s))) \).

We use these equilibrium default/renegotiation decisions to update the functions for period \(t \).

2.3 We finally update the period \(t \) value for each country \(i \):

\[
v_{i,t}(s) = w_{i,t}(s, D_{i,t}(s), B_{i,t}(s, D_{i,t}(s))),
\]

lenders’ consumption

\[
c_{L,t}(s) = y_L + \sum_{i=1}^{2} [(1 - h_{i,t})(1 - D_{i,t}(s)) \left[b_i - Q_{i,t}(s, D_{i,t}(s))B_{i,t}(s, D_{i,t}(s)) \right] + \sum_{i=1}^{2} [h_{i,t}(1 - D_{i,t}(s))\phi_{i,t}(s, D_{i,t}(s))],
\]

44
and the expected discounted recovery ζ

$$\zeta_{i,t}(s) = \delta \sum_{y'} \pi(y'|y) g'(c_{L,i}(s')) \left[(1 - D_{i,t}(s')) \phi_{i,t}(s') + D_{i,t}(s') \zeta_{i,t+1}(s') \right].$$

The value of the lender is given by

$$V_{L,t}(s) = g(c_{L,t}(s)) + \delta \sum_{y'} \pi(y'|y) V_{L,t+1}(s'),$$

where the future debt in s' for country i is $B_{i,t}^*(s')$. In particular, $B_{i,t}^*(s) = B_{i,t}(s, D_{i,t}(s))$ if $h_i = 0$ and $D_{i,t}(s) = 0$, $B_{i,t}^*(s) = 0$ if $h_i = 1$ and $D_{i,t}(s) = 0$, and $B_{i,t}^*(s) = b_i$ if $D_{i,t}(s) = 1$.

Appendix IV. Empirical Robustness

This appendix provides descriptive statistics and robustness of the empirical results in Section 5. Figure 8 plots the five-year moving average of the fraction of countries in default and

![Figure 8: Historical Defaults and Renegotiations](image)

the fraction of countries renegotiating over time. The figure illustrates that default rose in the early 1980s and remained elevated until the mid-1990s. Such an inverted hump shape mainly reflects the debt crises of the 1980s across Latin America. The fraction of countries
renegotiating the debt rose to almost 0.06 in the mid-1990s.\footnote{Recall that in the regressions, the main independent variables Frac Default$_{it}$ and Frac Renegotiate$_{it}$ are of the fraction of countries, not including i, that are in default or are renegotiating. In this figure, however, we simply illustrate overall fractions.}

We provide two sets of robustness analysis for the regression results. We first address the concern that a common world shock might be driving the fraction of countries in default and the fraction of countries renegotiating. In Table 6 we add linearly detrended world GDP to all the regressions. World GDP is significant in the renegotiation and recovery regressions. World booms are associated with fewer renegotiations and higher recovery rates. The variables Frac Default$_{it}$ and Frac Renegotiate$_{it}$ continue to be significant and with the expected sign in all specifications. All standard errors continue to be clustered at the country level.

<table>
<thead>
<tr>
<th>Table 6: Cross-Country Regressions with World GDP</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>Fraction in Default$_{it}$</td>
</tr>
<tr>
<td>Fraction Renegotiating$_{it}$</td>
</tr>
<tr>
<td>Debt/GDP$_{it}$</td>
</tr>
<tr>
<td>World GDP$_t$</td>
</tr>
<tr>
<td>Country fixed effects</td>
</tr>
<tr>
<td>Adjusted R^2</td>
</tr>
<tr>
<td>Observations</td>
</tr>
</tbody>
</table>

We also estimate the renegotiation and recovery regressions, taking into account the inherent selection of these observations. Being in a state where renegotiation and recovery are nonmissing observations requires the country to be in a default state. Default state equals 1 in years where each country is in default or renegotiates. Table 7 presents the maximum likelihood estimation results from this specification with clustered errors. We estimate the selection equation with a probit and use lags of the independent variables as regressors. The coefficients on Frac Default$_{it}$, Frac Renegotiate$_{it}$, and Debt/GDP$_{it}$ in the renegotiation and recovery equations continue to be significant and with the expected sign. Economically, the coefficients are somewhat smaller than in the benchmark specification.
Table 7: Cross-Country Regressions with Heckman Selection Estimates

<table>
<thead>
<tr>
<th></th>
<th>Renegotiation</th>
<th>Recovery</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fraction in Default$_{it}$</td>
<td>-0.55**</td>
<td>1.44***</td>
</tr>
<tr>
<td>Fraction Renegotiating$_{it}$</td>
<td>2.45**</td>
<td>-6.83***</td>
</tr>
<tr>
<td>Debt/GDP$_{it}$</td>
<td>-0.03***</td>
<td>-0.19***</td>
</tr>
</tbody>
</table>

Selection Eq.

<table>
<thead>
<tr>
<th></th>
<th>State default</th>
<th>State default</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fraction in Default$_{it-1}$</td>
<td>5.13***</td>
<td>5.12***</td>
</tr>
<tr>
<td>Fraction Renegotiating$_{it-1}$</td>
<td>-6.43</td>
<td>-6.23</td>
</tr>
<tr>
<td>Debt/GDP$_{it-1}$</td>
<td>0.39*</td>
<td>0.40*</td>
</tr>
<tr>
<td>Observations</td>
<td>2682</td>
<td>2279</td>
</tr>
</tbody>
</table>