Paper: about effect of uncertainty on investment and productivity with relational contracts

- **issue:** how to reconcile evidence that effect is adverse with traditional theory that, with risk-neutral agents, would not be

Recent literature: focussed on option value of not making irreversible investments (Dixit-Pindyck, 1994)

- gives rise to adjustment, not long-run equilibrium, effect
 - calibration in Bloom (*Ecta*, 2009) has most of adjustment in 3 years
 - now that > 10 years after 2007 crisis, know not what happened
 - Bloom *et al* (*Ecta*, 2018) find need (unappealing) negative mean productivity shock to capture, not just increase in uncertainty

With relational contracts: greater uncertainty affects long-run equilibrium investment

- calibration with parameters of Bloom *et al* (*Ecta*, 2018) can generate:
 - decrease in general investment in data with just greater uncertainty
 - increase in specific investment: of interest because Bloom (*JEP*, 2014) comments that some investments increase with greater uncertainty
With each recession (shaded area), investment drops, then starts to grow but not back to previous path (as would with irreversible investment):
The model: key elements

- **MacLeod & Malcomson (Econometrica, 1989)** plus:
 - **uncertainty:** productivity of “effort” has iid shock each period;
 - **investment in capital:** can enhance productivity of relationship.

- **Principal’s payoff** in period t conditional on being matched:
 \[y(e_t, K, \theta_t) - W_t, \]
 where W_t is payment to agent and:
 - $y(e_t, K, \theta_t)$: (non-contractible) output at t;
 - $\theta_t \in [\theta, \bar{\theta}]$: iid random variable distributed $F(\theta, \sigma)$, with $dF(\theta, \sigma) > 0$ for all $\theta \in [\theta, \bar{\theta}]$, parameterized by σ and observed by both parties at start of period t;
 - $e_t \in [0, \bar{e}]$: agent’s non-contractible effort at t, chosen after θ_t known;
 - $K \in [0, \bar{K}]$: capital investment at start of relationship at cost $C(K)$.

- **Agent’s payoff** in period t conditional on being matched:
 \[W_t - c(e_t), \]
 where $c(e_t)$ is increasing and convex cost of effort.

- **Payoffs if unmatched:** principal $v(K) \geq 0$, agent $u(K) \geq 0$, with $s(K) := u(K) + v(K) > 0$, for all $K \in [0, \bar{K}]$.

- **Discount factor** for both parties δ.
Key result

Effort cannot be enforced contractually in court because output and effort non-contractible

- so limited to what is in current interest of both parties

Proposition

An effort schedule $e(K, \theta)$ that generates expected joint payoff $S(K, \sigma)$ each period with capital stock K can be implemented by a stationary contract if and only if

$$
\frac{\delta}{1 - \delta} [S(K, \sigma) - s(K, \sigma)] \geq c(e(K, \theta)), \quad \text{for all } \theta \in [\theta, \bar{\theta}] .
$$

- $S(K, \sigma)$: joint (principal + agent) payoff from one period before shock θ realized given K and σ:
 - irrelevant how divided between principal and agent.
- (1) requires joint payoff gain from future exceeds cost of effort now.
Implications of key result

Key equation is

$$\frac{\delta}{1 - \delta} [S(K, \sigma) - s(K, \sigma)] \geq c(e(K, \theta)), \quad \text{for all } \theta \in [\theta, \bar{\theta}]. \quad (2)$$

- With iid shocks, left-hand side is independent of current θ
 - first-best effort $e^*(K, \theta)$ is increasing in θ
 - if constraint not binding for θ, implement first-best effort
 - so: if constraint binding for $\theta = \tilde{\theta}$, it is certainly binding for all higher θ.

- Implication: binding constraint restricts how much can adjust to θ
 - if without constraint joint payoff is linear in θ (risk neutrality)
 - with constraint, joint payoff is strictly concave
 - so: make general investment choice as if risk averse
 - specific investment relaxes constraint (2) because increases joint payoff from future so greater uncertainty may increase return to it.
Illustration of effort constraint

- Thin line: first-best effort for given capital stock
- Dotted line: highest effort sustainable given total future payoff gain
- Thick line: optimal effort with relational contract
- Use term *cutoff shock* for shock above which effort with relational contract constrained
 - equals 1 in case illustrated in figure.
Functional forms for calibration

- As literature, Cobb-Douglas production and iso-elastic cost functions:
 \[y(e, K, \theta) = \theta^\gamma K^\alpha e^\beta, \quad \alpha, \beta, \gamma > 0, \quad \alpha + \beta \leq 1; \]
 \[c(e) = ce^n, \quad c > 0, n \geq 1; \]
 \[C(K) = CK^k, \quad C > 0, k \geq 1. \]

- Joint payoff if no relational contract constraint (first-best effort)
 \[s(e^* (K, \theta), K, \theta) = \left(1 - \frac{\beta}{n}\right) \left(\frac{\beta}{nc}\right)^{\frac{\beta/n}{1-\beta/n}} \theta^{\frac{\gamma}{1-\beta/n}} K^{\frac{\alpha}{1-\beta/n}}. \]

- Risk neutrality requires \(\gamma = 1 - \beta / n \):
 - so expected joint payoff affected by \(\theta \) only through its mean.

- Distribution of \(\theta \) log-normal:
 - stationary counterpart to autoregressive process with normally distributed logs of innovations;
 - implies always *interior cutoff shock* for first-best effort:
 - marginal productivity of effort \(\to \infty \) as \(\theta \to \infty \); to 0 as \(\theta \to 0 \).
Implications of functional forms for relational contract

- Joint payoff with relational contract and $\tilde{\theta}$ cutoff shock

$$s \left(e^* (K, \tilde{\theta}) , K, \theta \right) = \left(\frac{\beta}{nc} \right)^{\frac{\beta}{n}} \tilde{\theta}^{1-\frac{\gamma}{n}} K^{\frac{\alpha}{1-\frac{\gamma}{n}}} \left[\left(\frac{\theta}{\tilde{\theta}} \right)^{\gamma} - \frac{\beta}{n} \right]. \quad (3)$$

Note that strictly concave in θ for given $\tilde{\theta}$ when $\gamma < 1$.

- For notational convenience, define

$$\hat{S} (\sigma) = \frac{\delta}{1-\delta} [S (K, \sigma) - s (K, \sigma)]. \quad (4)$$

- For different σ_L and σ_H, use first-order conditions for general capital to express cutoff shock for σ_H, $\hat{G}^G (\sigma_H)$, in terms of cutoff shock for σ_L, $\hat{G}^G (\sigma_L)$.

- Optimal general investment $\hat{K}^G (\sigma)$ for different σ_L and σ_H satisfies

$$\frac{\hat{K}^G (\sigma_L)}{\hat{K}^G (\sigma_H)} = \left[\frac{\hat{S} (\sigma_L) \hat{G}^G (\sigma_H)}{\hat{S} (\sigma_H) \hat{G}^G (\sigma_L)} \right]^{\frac{1-\frac{\beta}{n}}{\alpha}}. \quad (5)$$
Parameters for calibration

Based on Bloom et al (Ecta, 2018), combining aggregate σ^A and firm σ^Z shocks (higher σ corresponds to higher variance):

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>α</td>
<td>0.25</td>
<td>Factor share with isoelastic demand, 33% markup</td>
</tr>
<tr>
<td>β</td>
<td>0.5</td>
<td>As α with labour share 2/3, capital share 1/3</td>
</tr>
<tr>
<td>n</td>
<td>1</td>
<td>Implied by Bloom et al (2018) model</td>
</tr>
<tr>
<td>k</td>
<td>1</td>
<td>Implied by Bloom et al (2018) model</td>
</tr>
<tr>
<td>σ^A_L</td>
<td>0.67</td>
<td>Bloom et al (2018) estimate, %</td>
</tr>
<tr>
<td>σ^A_H / σ^A_L</td>
<td>1.6</td>
<td>Bloom et al (2018) estimate</td>
</tr>
<tr>
<td>σ^Z_L</td>
<td>5.1</td>
<td>Bloom et al (2018) estimate, %</td>
</tr>
<tr>
<td>σ^Z_H / σ^Z_L</td>
<td>4.1</td>
<td>Bloom et al (2018) estimate</td>
</tr>
<tr>
<td>σ_L</td>
<td>0.10</td>
<td>Calculated combined σ^A_L and σ^Z_L for θ</td>
</tr>
<tr>
<td>σ_H / σ_L</td>
<td>4.07</td>
<td>Calculated from combined σ^A_H and σ^Z_H for θ</td>
</tr>
</tbody>
</table>

Table: Parameter values for calibration
Parameters for calibration (cont)

- To fully calibrate relational contract model, also need specifications for \(\delta \) and \(s(K, \sigma) \).
 - \(s(K, \sigma) \) is joint payoff if separate from relationship
 - no counterpart in Bloom et al (Ecta, 2018)
 - no obvious way to derive from data.
 - any brilliant suggestions more than welcome!

- Alternative used here: combination of \(\delta \) and \(s(K, \sigma) \) implies cutoff shock for given \(\sigma \):
 - illustrate effect of change in uncertainty by calculating for different possible values of cutoff shock for \(\sigma_L \);
 - to be interpreted as values on domain of log-normal distribution with mean 1.

- Two kinds of shock:
 - systemics: affects values of both continuing and ending relationship
 - for systemic shocks, \(\hat{S}(\sigma) \) independent of \(\sigma \).
 - idiosyncratic: affects value only of continuing relationship.
Table: Effect of increase in systemic risk with general capital for given cutoff shock for σ_L

- Effects for *given* cutoff shock for σ_L (log-normal distribution, mean 1);
 - for cutoff shock for $\sigma_L = 1$, capital falls by 6%, productivity by 11%;
 - effect smaller as cutoff shock for σ_L moves away from mean;
 - still substantial even for cutoff shock for σ_L 50% above or below mean;
 - recall: effects would be zero in absence of relational contract.

- To fit their model to data, Bloom *et al* (*Ecta*, 2018)
 - add -2% *first* moment aggregate shock to increased second moment
 - without relational contract, here gives c. 4% fall in general capital
 - within range in table from higher second moment alone.
Specific capital with idiosyncratic shocks

Specific capital more complicated as relaxes relational contract constraint
- consider only idiosyncratic shocks here and all capital specific
- presumably only a small share of capital so calibrated α far too high
 - any suggestions for appropriate value welcomed!
- only limited range of cutoff shock for σ_L can be optimal values for any $c, C > 0$:
 - between 3.24 and 77.4 for calibrated parameters, well above mean
- so: use calibration only to illustrate theoretical effect that greater uncertainty can increase specific capital:

<table>
<thead>
<tr>
<th>Cutoff shock for σ_L</th>
<th>75.00</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cutoff shock for σ_H</td>
<td>14.23</td>
</tr>
<tr>
<td>Capital change (%)</td>
<td>2434.2</td>
</tr>
</tbody>
</table>

Table: Effect of increase in idiosyncratic risk with specific capital for given cutoff shock for σ_L
Comments on calibration results

- Compared *long-run equilibria* for σ_L and σ_H, no dynamics
 - even that non-trivial with relational contract constraint!
 - I conjecture theory with probabilistic switching between σ_L and σ_H
 - regimes doable
 - but needs *better computational skills than mine* to do calibration
- Effects in tables are for *capital* not *gross investment*
 - in comparison of long-run equilibria, related by
 - replacement for depreciation in continuing firms
 - investment by replacement firms for those going out of business
 - if these in constant proportions, percentage changes same
- *Capital rigidity*: model allows no adjustment of capital, upwards as well as downwards, in response to shocks
 - one-sided irreversibility tricky to handle with relational contracts.
Conclusion

Theoretical effects of greater uncertainty

- **general investment**: risk-neutral parties choose as if risk-averse when rely on relational contract
 - so: greater uncertainty reduces general investment for same mean

- **specific investment**: relaxes relational contract constraint
 - greater uncertainty for same mean may increase specific investment because relaxing constraint becomes more valuable

Calibrated effects of greater uncertainty
with functions and parameters based on Bloom *et al* (*Ecta*, 2018):

- **general investment**: no need for (unappealing) negative first-moment shock to capture fall of magnitude in data

- **specific investment**: increases with greater uncertainty
 - of interest because Bloom (*JEP*, 2014) comments that some investments increase with greater uncertainty.