Asset Pricing with Persistence Risk

Daniel Andrei* Michael Hasler† Alexandre Jeanneret‡

May 30, 2018

Abstract

Persistence risk is an endogenous source of risk that arises when a rational agent learns about the length of business cycles. Persistence risk is positive during recessions and negative during expansions. This asymmetry, which results solely from learning about persistence, causes expected returns, return volatility, and the price of risk to rise during recessions. Persistence risk predicts future excess returns, particularly at 3- to 7-year horizons. Its predictability is strongest around business cycle peaks and troughs. We confirm the model’s predictions in the data, and provide evidence that persistence risk is priced in financial markets.

*UCLA Anderson Graduate School of Management, 110 Westwood Plaza, Suite C420, Los Angeles, CA 90095, USA; +1 (310) 825-3544; daniel.andrei@anderson.ucla.edu; www.danielandrei.info.
†University of Toronto, Rotman School of Management, 105 St. George Street, Suite 431, Toronto, ON M5S 3E6, Canada, michael.hasler@rotman.utoronto.ca; www.rotman.utoronto.ca/faculty/hasler.
‡Department of Finance, HEC Montréal, 3000 Côte-Sainte-Catherine, Montréal, QC H3T 2A7, Canada; +1 (514) 589-6699; alexandre.jeanneret@hec.ca; www.alexandrejeanneret.com.
1 Introduction

Uncertainty and its effects on the economy have been subject to much research over the past decade. The driving force behind this surge in research interest is the finding that recessions are accompanied by increases in uncertainty (Bloom, 2009; Jurado, Ludvigson, and Ng, 2015). A growing body of theoretical and empirical literature demonstrates the damaging effects of uncertainty on the real economy, such as depressed investment and hiring, sluggish economic performance, and declines in consumption expenditures, among many others.¹

A basic question is what effect does uncertainty have on asset prices. Because uncertainty influences investors’ decisions, it must impact equilibrium asset returns. In this paper, we show that investors’ learning amplifies the impact of uncertainty on asset prices. This amplification seems counterintuitive—learning is expected to reduce uncertainty and to attenuate its impact. Yet, we prove theoretically and empirically that learning amplifies asset price fluctuations and increases the price of risk, particularly during recessions.

We build a general equilibrium model in which a representative agent faces uncertainty about the path of future economic growth. We depart from the incomplete information literature, which assumes that the unknown dimension is the level of expected economic growth.² Instead, we assume that the level of expected economic growth is known, but its degree of persistence is not—the agent is uncertain about the length of business cycles.

An environment with uncertainty about the length of business cycles yields three novel implications. First, learning about persistence induces an asymmetry in the formation of beliefs. The agent revises her beliefs about persistence in bad times in the opposite direction as she does in good times.³ In bad times, negative news about economic growth signals greater persistence. Under a preference for early resolution of uncertainty, greater persistence—i.e., more long-run risk—amplifies the negative effect of news. In good times, negative news signals less persistence, which attenuates the negative effect of news. By the same logic, positive news signals less persistence in bad times (which amplifies its effect) but more persistence in good times (which attenuates its effect). Overall, learning creates an asymmetry that makes bad times riskier than good times and increases expected returns, return volatility, and the price of risk during recessions.

The second implication is that belief revisions are large around business cycle peaks and troughs. Business cycle peaks and troughs are extreme times, characterized by strongly posi-

¹For a comprehensive review of this literature, see Bloom (2014). See also Jurado et al. (2015) and Ludvigson, Ma, and Ng (2018) and the references therein.

²Extensive surveys of this literature can be found in Ziegler (2003) and Pastor and Veronesi (2009).

³Throughout the paper, we define good (bad) times as periods during which the level of expected economic growth is above (below) its long-term mean.
tive or negative economic growth. During such times, changes in economic growth are highly informative about the degree of persistence. Consequently, beliefs become more volatile. This leads to higher volatility and risk premia not only during severe recessions but also during strong economic expansions.

The third implication is that the informativeness of news varies endogenously with the state of the economy. This causes the agent’s subjective uncertainty about persistence to fluctuate: uncertainty decreases in states when news is more informative about persistence (and belief revisions are large), and it increases in states when news is less informative (and belief revisions are small). Therefore, learning about persistence affects aggregate risk and uncertainty in opposite ways: in states when belief revisions are large, aggregate risk is high but uncertainty about persistence is low.

The driver of these implications is a source of risk that arises solely when persistence is uncertain. This source of risk, which we call persistence risk, is the covariance between changes in beliefs about persistence and changes in expected economic growth. Because belief revisions are asymmetric, persistence risk is positive in bad times and negative in good times. In extreme times, persistence risk is large in absolute value. Persistence risk is priced in equilibrium and drives all asset pricing moments. Volatility, risk premia, and Sharpe ratios increase during bad times, when persistence risk is positive, but also during very good times, when persistence risk is negative and large in magnitude.

We use Maximum Likelihood (Hamilton, 1994) to calibrate the model to real GDP growth and analyst forecast data over the period Q4:1968–Q4:2016. The estimation shows that the degree of persistence in output growth varies significantly over time. Using the estimated parameters, we generate model-implied time series for stock return volatility, the risk premium, and the Sharpe ratio. These model-implied asset pricing moments align well with their empirical counterparts.

The estimation provides time series of the uncertainty about persistence and persistence risk, which we use to test our model’s predictions. First, the asymmetric formation of beliefs implies that the equity risk premium, Sharpe ratio and stock return volatility increase with persistence risk. Second, learning induces large belief revisions and increases asset pricing moments around business cycle peaks and troughs, which implies U-shaped relationships between asset pricing moments and persistence risk. Third, large belief revisions contribute to faster resolution of uncertainty about persistence, which implies a negative relationship between asset pricing moments and the uncertainty about persistence. We find supporting evidence for these theoretical predictions.

Because high persistence risk yields a large risk premium, it must positively predict future excess returns. The data confirm this predictability, particularly at 3- to 7-year horizons.
Furthermore, learning implies stronger return predictability in extreme times, when economic growth is far from its long-term mean. This implication, confirmed by the data, is unique to persistence risk. In contrast, the price-dividend ratio does predict future excess returns, but its predictability does not strengthen in extreme times. This provides evidence that learning is the channel through which persistence risk is priced in the equity market.

Our work belongs to the incomplete information literature. Most studies in this literature assume that the single unobservable dimension is the level of expected output growth. Learning about the level of expected growth ignores confounding effects, which occur when uncertainty about one quantity makes learning about other quantities more difficult. As Johannes, Lochstoer, and Mou (2016) argue, confounding effects magnify uncertainty, which is helpful for empirically relating changes in beliefs and asset prices. In contrast, we show that standard learning about a single parameter is sufficient to generate empirically relevant asset pricing implications. We obtain this result with a unidimensional learning framework in which we focus on the persistence of expected output growth rather than on its level. None of our asset pricing implications obtain with learning about the level of expected growth.

Another related strand of literature posits that investors’ uncertainty about the conditional distribution of consumption growth explains a time-varying price of risk. Johannes et al. (2016) show that multidimensional learning induces significant variation in long-run beliefs. Collin-Dufresne, Johannes, and Lochstoer (2016b) show that learning generates long-run risk and implies a large equilibrium risk premium under a preference for early resolution of uncertainty. Kozlowski, Veldkamp, and Venkateswaran (2015) show that belief updating generates a more persistent economic response from extreme shocks than from ordinary shocks—a negative tail event can trigger “secular stagnation.” Hansen and Sargent (2010, 2017) propose investors’ fear of model misspecification: when the economic model is unknown, the price of risk fluctuates because investors choose a model with high persistence in bad times and a model with low persistence in good times—“A pessimist thinks that good

4See Detemple (1986), Veronesi (1999, 2000), Brennan and Xia (2001), Dumas, Kurshev, and Uppal (2009), and Ai (2010). Two exceptions are worth noting. Pakoš (2013) analyzes an economy in which a representative agent cannot distinguish between a mild recession and a “lost decade,” which exogenously introduces asymmetry and a stronger response to news in bad times. In our case, the asymmetry arises endogenously. Andrei, Carlin, and Hasler (2018) build a model in which agents with isoelastic utility disagree about the length of business cycles. They do not study the implications of learning about persistence when agents have a preference for early resolution of uncertainty.

5In related work, Collin-Dufresne, Johannes, and Lochstoer (2016a) propose experiential learning (young people update beliefs more in response to aggregate shocks than do old people) as a mechanism for time-variation in the price of risk. van Nieuwerburgh and Veldkamp (2006) show that learning about productivity implies economic growth asymmetries, with sharp downturns and gradual recoveries. Croce, Lettau, and Ludvigson (2015) provide a foundation for the downward-sloping term structure of equity risk based on bounded rationality and limited information.
news is temporary and that bad news endures.” (Hansen and Sargent, 2010, p. 129).6

The common theme of this literature is that agents do not know the true structure of the economy. This induces uncertainty about the model structure, which resolves slowly over time. In contrast, in our framework, the agent assigns probability one to a model with time-varying but unobservable persistence and updates beliefs with full knowledge of the structure of the economy and without fear of model misspecification. Although our model features standard learning about a single parameter, we show that the impact of ordinary business cycle shocks depends on the state of the economy: shocks trigger large belief revisions and significant fluctuations in asset prices around business cycle peaks and troughs.

More broadly, several consumption-based models obtain a countercyclical price of risk, through various approaches. One approach assumes exogenous movements in the conditional volatility of shocks driving consumption growth. Prominent examples are the long-run risk model (Bansal and Yaron, 2004) and the time-varying disaster risk model (Wachter, 2013). A second approach assumes stochastic risk aversion, as in the habit-formation models. In Campbell and Cochrane (1999), the price of risk increases during recessions because the representative agent’s risk aversion depends countercyclically on the history of consumption growth. Chan and Kogan (2002) show that such countercyclicality arises in a multiple-agent setting with habit formation and heterogeneous risk aversion. In contrast, our framework assumes away exogenous variation in the conditional volatility of consumption growth or stochastic risk aversion. We also show that learning about persistence implies a U-shaped relationship between asset-pricing moments and the state of the economy, whereas this relationship remains monotone in the long-run risk and habit formation models.

We propose a novel view of fluctuations in the price of risk. In our model, investors fear stocks during recessions because a decline in expected growth signals stronger persistence and thus increases the price of risk. This effect arises internally, solely from learning about persistence. We estimate the parameters of this learning model, and focus on its quantitative implications in a general equilibrium with Epstein-Zin preferences. We develop, test, and find empirical support for a set of predictions specific to a model with learning about persistence. Overall, our study provides evidence of learning about persistence in financial markets and describes a mechanism through which the price of risk increases not only during recessions but also during strong economic expansions.

6In Bidder and Dew-Becker (2016), ambiguity-averse investors fear a “worst-case” model in which shocks to expected consumption have a half-life of 70 years—in Bansal and Yaron (2004), the half-life of shocks is 3 years. See Hansen (2014) for a comprehensive review of this literature.
2 Theory

In this section, we introduce an economic model with uncertainty about persistence, formalize the agent’s learning problem, and characterize the equilibrium asset prices.

The economy is defined over a continuous-time horizon $[0, \infty)$. A representative agent derives utility from consumption. The agent has Kreps-Porteus preferences (Epstein and Zin, 1989; Weil, 1990) with subjective discount rate β, relative risk aversion γ, and elasticity of intertemporal substitution ψ. The indirect utility function is given by

$$J_t = \mathbb{E}_t \left[\int_t^{\infty} h(C_s, J_s) ds \right],$$

where the aggregator h is defined as in Duffie and Epstein (1992):

$$h(C, J) = \frac{\beta}{1 - 1/\psi} \left(\frac{C^{1-1/\psi}}{[(1 - \gamma)J]^{1/\phi - 1}} - (1 - \gamma)J \right),$$

with $\phi \equiv \frac{1-\gamma}{1-1/\psi}$. The agent prefers early resolution of uncertainty when $1 - \phi > 0$.

The process of aggregate output in the economy evolves according to

$$d\delta_t/\delta_t = f_t dt + \sigma_d dW^\delta_t.$$

The agent observes the expected output growth f_t, which is measured by the average growth forecast obtained from a survey of professional forecasters. This average forecast mean reverts toward a long-term mean \bar{f} according to

$$df_t = \theta_t (\bar{f} - f_t) dt + \sigma_f dW^f_t.$$

In addition to the average forecast f_t, the agent observes a measure of cross-sectional dispersion from the panel of forecasts (e.g., the difference between the 75th percentile and the 25th percentile of the forecasts), which is commonly interpreted as disagreement. Letting \bar{g} be the long-term mean of disagreement, disagreement mean reverts according to

$$dg_t = -\kappa_g (\bar{g} - g_t) dt + \sigma_g dW^g_t + \sigma_g \sqrt{1 - \rho^2} dW^\rho_t.$$

The agent operates under incomplete information. Specifically, the agent does not observe the parameter θ_t in Eq. (4), i.e., the persistence of the average forecast. This parameter has two components: an observable long-term average and an unobservable, time-varying noise

7We analyze separately the case when the expected output growth is unobservable in Section 5.
with zero mean. We thus define \(\theta_t \equiv \bar{\theta} + \lambda_t \), where \(\lambda_t \) follows

\[
d\lambda_t = -\kappa \lambda_t dt + \sigma_\lambda dW^\lambda_t. \tag{6}
\]

The standard Brownian motions \(W^\delta_t, W^f_t, W^g_t \), and \(W^\lambda_t \) are mutually independent, and the parameters \(\bar{f}, \bar{\theta}, \kappa, \kappa, \sigma_\delta, \sigma_f, \sigma_g, \sigma_\lambda \), and \(\rho \) are known constants.

We make several simplifying assumptions. First, there are no exogenous movements of the conditional volatilities of shocks (\(\sigma_\delta, \sigma_f, \sigma_g, \) and \(\sigma_\lambda \) are constant). Second, the agent knows the true structure of the economy (i.e., the model specification and its parameters) and perfectly trusts this structure, without fear of model misspecification or ambiguity aversion. Third, learning is unidimensional—the only unobservable variable is \(\lambda_t \). These assumptions are made for the purpose of isolating the effects of learning about persistence. Stochastic volatility, fear of model misspecification, and multidimensional learning have been the focus of separate studies,\(^8\) and are beyond the scope of this paper.

2.1 Learning

The agent continuously observes the aggregate output process \(\delta_t \), the average forecast \(f_t \) and the disagreement among forecasters \(g_t \), but does not observe the persistence parameter \(\lambda_t \). Denote the information set of the agent at time \(t \) by \(F_t \), the estimated unobservable component of the mean-reversion speed by \(\hat{\lambda}_t \equiv \mathbb{E}[\lambda_t | F_t] \), and its posterior variance by \(\nu_{\lambda,t} \equiv \mathbb{E}[(\lambda_t - \hat{\lambda}_t)^2 | F_t] \). Standard Kalman filtering implies

\[
\lambda_t \sim N(\hat{\lambda}_t, \nu_{\lambda,t}), \tag{7}
\]

where \(N(m, v) \) is the Normal distribution with mean \(m \) and variance \(v \).

In what follows, we refer to the estimate \(\hat{\lambda}_t \) as the filter and to the posterior variance \(\nu_{\lambda,t} \) as the uncertainty about persistence. The following proposition obtains from filtering theory (Liptser and Shiryaev, 2001), the proof of which is provided in Appendix A.

Proposition 1. (Learning about persistence) The filter evolves according to

\[
d\hat{\lambda}_t = -\kappa \hat{\lambda}_t dt + \frac{(\bar{f} - f_t)\nu_{\lambda,t}}{\sigma_f} d\hat{W}_t^f - \frac{\rho}{\sqrt{1 - \rho^2}} \frac{(\bar{f} - f_t)\nu_{\lambda,t}}{\sigma_f} d\hat{W}_t^g, \tag{8}
\]

where \(\hat{W}_t^f \) and \(\hat{W}_t^g \) are independent standard Brownian motions under the filtration \(F_t \). Their

definitions are provided in Appendix A, Eqs. (A.12)–(A.13).

The uncertainty about persistence is locally deterministic. It evolves according to

$$\frac{d\nu_{\lambda,t}}{dt} = \sigma_\lambda^2 - 2\kappa\nu_{\lambda,t} - \frac{(\bar{f} - f_t)^2\nu_{\lambda,t}^2}{\sigma_f^2(1 - \rho^2)}. \quad (9)$$

The two independent Brownian motions driving the dynamics of the filter, \(\tilde{W}_t^f\) and \(\tilde{W}_t^g\), are defined such that under the filtration of the agent, \(f_t\) and \(g_t\) evolve according to

$$df_t = (\bar{\theta} + \tilde{\lambda}_t)(\bar{f} - f_t)dt + \sigma_{f}d\tilde{W}_t^f \quad (10)$$

$$dg_t = -\kappa_{g}(\bar{g} - g_t)dt + \sigma_{g}\rho d\tilde{W}_t^f + \sigma_{g}\sqrt{1 - \rho^2}d\tilde{W}_t^g. \quad (11)$$

At time \(t\), the agent observes changes in the average forecast and in forecasters’ disagreement. These changes, which are generated by forecast shocks \(d\tilde{W}_t^f\) and by disagreement shocks \(d\tilde{W}_t^g\), are informative about the mean-reversion speed \(\lambda_t\). Thus, both shocks drive the belief updating rule (Eq. 8).

To develop intuition and understand the implications of Proposition 1, it is useful to think of the unobservable degree of persistence as a regression coefficient between current values of a process and its previous values. When this regression coefficient is unobservable, the agent uses past observations to estimate it. Therefore, the agent’s estimate of the degree of persistence depends on the history of the process. This result arises once the persistence of a mean-reverting process is unobservable and must be estimated. It implies that belief updating depends on the state of the economy.\(^9\)

In the context of our model, the above intuition implies that the conditional covariance between changes in the filter \(\tilde{\lambda}_t\) and changes in the average forecast \(f_t\) is state-dependent. We label this conditional covariance persistence risk:

$$\text{Persistence risk} \equiv \text{Cov}_t[d\tilde{\lambda}_t, df_t] = (\bar{f} - f_t)\nu_{\lambda,t}. \quad (12)$$

Persistence risk differs from zero only in presence of uncertainty about persistence (when \(\nu_{\lambda,t} > 0\)). Persistence risk is positive in bad times (when \(f_t < \bar{f}\)) and negative in good times (when \(f_t > \bar{f}\)).\(^{10}\) These properties yield three implications, which we state as corollaries.

Corollary 1.1. Belief updating is asymmetric: negative forecast shocks increase an agent’s

\(^9\)See also Xia (2001) for a similar intuition in a setting with learning about predictability.

\(^{10}\)In the same way as a stock can have a negative beta—a negative market risk—persistence risk can be negative. This occurs in good times, when negative forecast shocks imply less persistence. For an agent who prefers early resolution of uncertainty, less persistence is good news; hence, the sign becomes negative in good times.
perceived persistence in bad times and decrease it in good times; conversely, positive forecast shocks decrease an agent’s perceived persistence in bad times and increase it in good times.

This corollary follows from Eq. (12), which shows that the covariance between changes in the filter and changes in the forecast depends on the distance between the long-run output growth and the current forecast, \(\bar{f} - f_t \). We refer to this distance as the output growth gap. In bad times, when the output growth gap is above zero, negative forecast shocks increase the perceived degree of persistence (i.e., \(\hat{\lambda}_t \) decreases). The opposite arises in good times, when negative forecast shocks decrease the perceived degree of persistence. Similarly, positive forecast shocks increase persistence in good times and decrease it in bad times.

Corollary 1.2. Forecast shocks trigger large belief revisions around business cycle peaks and troughs—i.e., when the expected growth is very high \((f_t \gg \bar{f}) \) or very low \((f_t \ll \bar{f}) \).

This corollary follows directly from the conditional variance of the filter,

\[
\text{Var}_t[d\hat{\lambda}_t] = \frac{1}{1 - \rho^2} \frac{(\bar{f} - f_t)^2 \nu^2_{\lambda,t}}{\sigma_f^2},
\]

which increases when the output growth gap is large in absolute value. Intuitively, if \(f_t \) is far from its long-term mean, learning from forecast shocks and disagreement shocks is more effective for estimating \(\lambda_t \) because the signal-to-noise ratio in Eq. (4) is high. Since shocks are highly informative about persistence in extreme times (when \(f_t \gg \bar{f} \) or \(f_t \ll \bar{f} \)), beliefs become more volatile.

Disagreement among forecasters amplifies the conditional variance of the filter in Eq. (13). As Proposition 1 shows, when the correlation \(\rho \) is non-zero, disagreement shocks are informative about the duration of business cycles, and their informativeness increases with the magnitude of the output growth gap.

Overall, the conditional volatility of the filter is time-varying and increases when the forecast \(f_t \) moves away from its long-term mean \(\bar{f} \), yielding larger belief revisions. This effect is distinct from other mechanisms proposed in the literature. In Kozlowski et al. (2015), tail events trigger large belief revisions; in Johannes et al. (2016), multidimensional learning magnifies uncertainty and generates stronger shocks to beliefs. Here, learning is unidimensional, and forecast shocks \(d\hat{W}_t^{f} \) are ordinary. These shocks, however, trigger large belief revisions when the growth forecast is strongly positive or negative.

Corollary 1.3. The uncertainty about persistence \(\nu_{\lambda,t} \) is history-dependent. It decays faster in extreme times (when \(f_t \gg \bar{f} \) or \(f_t \ll \bar{f} \)) and increases when the forecast \(f_t \) is close to its long-term mean \(\bar{f} \)—i.e., in “normal times.”
Corollaries 1.2 and 1.3 are closely related. This can be seen by rewriting the uncertainty-updating rule for $\nu_{\lambda,t}$ (Eq. 9) using the result of Corollary 1.2, Eq. (13):

$$
\frac{d\nu_{\lambda,t}}{dt} = \sigma^2_{\lambda} - 2\kappa\nu_{\lambda,t} - \text{Var}_t[\hat{d}\lambda_t].
$$

(14)

According to the last term, uncertainty decays faster when the conditional variance of the filter is high. This arises in extreme times, when forecast shocks are highly informative about the degree of persistence. Once the forecast reverts closer to its long-term mean, the last term in (14) becomes negligible and uncertainty increases again. In short, uncertainty about persistence is time-varying. This differs from the standard uncertainty-updating rule encountered in previous work, where uncertainty is constant (e.g., Scheinkman and Xiong, 2003; Dumas et al., 2009).

Eq. (14) indicates a negative relationship between the variance of the filter and uncertainty about persistence. A simple way to understand this (counterintuitive) relationship is to consider a sequence of negative forecast shocks in bad times. Each of these shocks helps resolve uncertainty but, in turn, further magnifies the output growth gap. Beliefs become more volatile after each shock, but better learning decreases the uncertainty about persistence.

2.2 Equilibrium asset prices

Solving for the equilibrium involves writing the HJB equation:

$$
\max_C \{h(C, J) + L J\} = 0,
$$

(15)

with the differential operator LJ following from Itô’s lemma. We guess the following value function (Benzoni, Collin-Dufresne, and Goldstein, 2011):

$$
J(C, f, \hat{\lambda}, \nu_\lambda) = C^{1-\gamma} I(x)^\phi / (1-\gamma),
$$

(16)

where $I(x)$ is the wealth-consumption ratio, and $x \equiv [f, \hat{\lambda}, \nu_\lambda]^T$ denotes the state vector.\footnote{Disagreement g_t enters into the optimization problem only through the disagreement shocks $d\hat{W}_t^g$. This is because the level of disagreement g_t does not affect the level of the forecast (which is observable); instead, changes in disagreement affect the agent’s learning problem through the correlation ρ. Once learning takes place, the only relevant state variables for asset pricing are f_t, λ_t, and $\nu_{\lambda,t}$.}

Substituting the guess (16) into the HJB equation (15) and imposing the market clearing condition $C_t = \delta_t$ yields a partial differential equation (PDE) for the wealth-consumption
ratio. We solve this equation numerically using Chebyshev polynomials (Judd, 1998). Appendix B describes the equilibrium and provides details about the numerical procedure.

To understand the impact of learning about persistence on the dynamics of the wealth-consumption ratio, we first characterize the signs of the partial derivatives of the wealth-consumption ratio with respect to two state variables:

\[I_f > 0, \quad I_{\hat{\lambda}} > 0. \]

(17)

Let \(\sigma_f(x_t) \equiv [\sigma_{I_f}(x_t) \, \sigma_{I_g}(x_t)] \) be the diffusion vector of the wealth-consumption ratio. As detailed in Appendix B, this vector has two elements:

\[
\sigma_{I_f}(x_t) = \sigma_f I_f + \frac{(\bar{f} - f_t)\nu_{\lambda,t}}{\sigma_f} I_{\hat{\lambda}} \tag{18}
\]

\[
\sigma_{I_g}(x_t) = -\rho \frac{\bar{f} - f_t}{\sqrt{1 - \rho^2}} \frac{\nu_{\lambda,t}}{\sigma_f} I_{\hat{\lambda}}. \tag{19}
\]

The first element, \(\sigma_{I_f}(x_t) \), represents the sensitivity of the wealth-consumption ratio to forecast shocks \(d\hat{W}_f \); the second element, \(\sigma_{I_g}(x_t) \), represents the sensitivity of the wealth-consumption ratio to disagreement shocks \(d\hat{W}_g \).

These sensitivities are directly driven by persistence risk. Eq. (18) shows that learning about persistence increases the sensitivity of the wealth-consumption ratio to forecast shocks during bad times, when persistence risk is positive (a consequence of Corollary 1.1). Furthermore, Eq. (19) shows that the wealth-consumption ratio is also driven by disagreement shocks. This arises because disagreement shocks are correlated with forecast shocks. The sign and magnitude of both the correlation \(\rho \) and persistence risk jointly dictate the direction and magnitude of the sensitivity of the wealth-consumption ratio to disagreement shocks.

2.2.1 Risk-free rate and market price of risk

Following Duffie and Epstein (1992), the state price density is given by

\[
\xi_t = \exp \left[\int_0^t h_J(C_s, J_s) ds \right] h_C(C_t, J_t) = \exp \left[\int_0^t \left(\frac{\phi - 1}{I(x_s)} - \beta \phi \right) ds \right] \beta^{\phi} C_t^{-\gamma} I(x_t)^{\phi-1}. \tag{20}
\]

The risk-free rate \(r_{f,t} \) and the three-dimensional market price of risk \(m_t \) result directly

\(^{12}\)The first inequality states that the wealth-consumption ratio increases with the forecast; the second inequality states that the wealth-consumption ratio decreases when the growth forecast is more persistent (i.e., when \(\hat{\lambda}_t \) is smaller). We verify these inequalities in Appendix B.2.
from the dynamics of the state price density,

\[
\frac{d\xi_t}{\xi_t} = -r_{f,t} dt - m_t^\top d\hat{W}_t,
\]

where \(\hat{W}_t \equiv [W_t^\delta, W_t^f, W_t^g]^\top\) is the Brownian vector driving the output process, the growth forecast process, and the disagreement process. Itô’s lemma yields

\[
r_{f,t} = \beta + \frac{f_t}{\psi} - \frac{\gamma + \gamma\psi}{2\psi}\sigma_\delta^2 - \frac{1}{2}(1 - \phi) \left[\sigma_{I_f}^2(x_t) + \sigma_{I_g}^2(x_t) \right]
\]

(22)

\[
m_t = \left[\gamma \sigma_\delta (1 - \phi) \sigma_{I_f}(x_t) (1 - \phi) \sigma_{I_g}(x_t) \right]^\top.
\]

Fluctuations in the growth forecast generate a procyclical risk-free rate, as observed from the second term in (22). The third term is the precautionary savings effect, which lowers the risk-free rate. When the agent prefers early resolution of uncertainty \((1 - \phi > 0)\), fluctuations in the wealth-consumption ratio yield the last term in (22). The resulting effect is a lower risk-free rate.

The market price of risk in Eq. (23) has three components. The first component is due to output growth shocks \(dW_t^\delta\). The second and third components arise when the agent prefers early resolution of uncertainty \((1 - \phi > 0)\). Since persistence risk drives the wealth-consumption ratio diffusion terms \(\sigma_{I_f}(x_t)\) and \(\sigma_{I_g}(x_t)\), it also impacts the price of risk required by the agent to bear forecast shocks and disagreement shocks. The direct implication (from Corollary 1.1) is that the market price of risk increases during bad times, when persistence risk is positive. Furthermore, if \(\rho < 0\), the market price of disagreement risk is positive during bad times.

2.2.2 Asset prices

We assume that dividends are a levered claim on output (Abel, 1999):

\[
D_t = e^{-\beta_d t} \delta_t^\eta,
\]

(24)

where \(\eta \geq 1\) is the leverage parameter, and \(\beta_d > 0\) is a parameter that determines the expected growth rate of dividends. Leverage is motivated by the evidence that the volatility of dividend growth is larger than the volatility of output growth.\(^{13}\) This specification does not change the learning problem of the agent.

\(^{13}\)Using data from January 1969 to December 2016, the annualized CRSP dividend growth volatility is approximately 19%. Beeler and Campbell (2012) report values between 11% and 27%. See also Drechsler (2013) for numbers of similar magnitude. In comparison, the annualized output growth volatility is 1.4%.
The stock price is defined as a claim to the dividend process:

\[
\frac{dD_t}{D_t} = \left(-\beta_d + \eta\mu_t + \frac{1}{2}\eta(\eta - 1)\sigma_\delta^2\right) dt + \eta\sigma_\delta dW_t^\delta. \tag{25}
\]

Define the price-dividend ratio as \(\Pi(x_t)\). Its diffusion vector has two components:

\[
\sigma_{\Pi_f}(x_t) = \sigma_f \frac{\Pi_f}{\Pi} + \frac{(\bar{f} - f_t)\nu_{\lambda,t} \Pi_{\hat{\lambda}}}{\sigma_f} \tag{26}
\]

\[
\sigma_{\Pi_g}(x_t) = -\rho \frac{(\bar{f} - f_t)\nu_{\lambda,t} \Pi_{\hat{\lambda}}}{\sqrt{1 - \rho^2} \sigma_f} \tag{27}
\]

Without leverage \((\eta = 1, \beta_d = 0)\), these two components coincide with \(\sigma_{I_f}(x_t)\) and \(\sigma_{I_g}(x_t)\) from Eqs. (18)-(19). With leverage, we expect (and verify in Appendix B.2) the partial derivatives of \(\Pi\) to satisfy the same inequalities as in Eq. (17). The partial differential equation to be solved by \(\Pi(x_t)\) is provided in Appendix B.1.

2.2.3 Stock market volatility

The diffusion of stock returns, which we denote by \(\sigma_t\), satisfies

\[
\sigma_t = \left[\eta\sigma_\delta \quad \sigma_{\Pi_f}(x_t) \quad \sigma_{\Pi_g}(x_t)\right], \tag{28}
\]

which, after replacement of (26)-(27), yields the stock return variance:

\[
\|\sigma_t\|^2 = \eta^2 \sigma_\delta^2 + \frac{\sigma^2_{\Pi_f} \Pi_f^2}{\Pi^2} + \frac{2\Pi_f\Pi_{\hat{\lambda}}}{\Pi^2} (\bar{f} - f_t)\nu_{\lambda,t} \frac{\Pi_{\hat{\lambda}}}{\sigma_f^2} \frac{1}{1 - \rho^2} \frac{(\bar{f} - f_t)^2\nu_{\lambda,t}^2}{\sigma_f^2}, \tag{29}
\]

where we denote by \(PR_t \equiv (\bar{f} - f_t)\nu_{\lambda,t}\) our measure of persistence risk.

The stock return variance is directly driven by persistence risk (the third and fourth terms). Thus, Eq. (29) provides a link between stock market volatility and Corollaries 1.1 and 1.2. Corollary 1.1 implies an asymmetric market response: the sensitivity of stock prices to news is stronger when the economy is in bad times and persistence risk is positive; in contrast, when the economy is in good times, persistence risk is negative and thus attenuates the sensitivity of stock prices to news. This asymmetric effect arises through the third term in Eq. (29) and generates countercyclical stock market volatility.

In addition to this countercyclical effect, Corollary 1.2 implies an amplification of stock market volatility around business cycle peaks and troughs. When the economic growth
forecast is either unusually low or unusually high, shocks are highly informative about persistence and trigger large belief revisions, thereby increasing the volatility of the filter (the last term in Eq. 29). In turn, this amplifies the volatility of stock returns.

In sum, a model with learning about persistence generates not only countercyclical volatility but also increased volatility around business cycle peaks and troughs. Disagreement among forecasters amplifies the latter effect.

2.2.4 Equity risk premium and the aggregate price of risk

The equity risk premium is defined as the vector product between the diffusion of stock returns and the market price of risk, \(RP_t \equiv \sigma_t m_t \). Using Eqs. (23) and (28), we obtain

\[
RP_t = \gamma \eta \sigma_t^2 + (1 - \phi) [\sigma_{I_f}(x_t)\sigma_{PF}(x_t) + \sigma_{I_g}(x_t)\sigma_{PG}(x_t)] .
\] (30)

The equity risk premium consists of two terms. The first term pertains to risk generated by output growth shocks and is constant in our model. The second term can be further developed using Eqs. (18)–(19) and (26)-(27), leading to:

\[
RP_t = \gamma \eta \sigma_t^2 + (1 - \phi) \left[\sigma_f^2 \Pi f + I_f \Pi f + I_\lambda \Pi f \left(\bar{f} - f_t \right) \left(\bar{f} - f_t \right) \frac{1}{\sigma^2} \right] .
\] (31)

The equity risk premium is countercyclical due to the presence of persistence risk in the second term in brackets (Corollary 1.1). In addition, Corollary 1.2 implies a further increase in the risk premium in very low and very high growth periods, because these are extreme times during which belief revisions are large (the last term in brackets). This latter effect is further amplified by disagreement among forecasters, through the correlation parameter \(\rho \).

The aggregate price of risk in this economy (i.e., the Sharpe ratio) is defined as

\[
SR_t \equiv \frac{RP_t}{\| \sigma_t \|} .
\] (32)

If the impact of learning about persistence is stronger in magnitude for the equity risk premium than for volatility, then we expect the Sharpe ratio to be countercyclical and quadratic with respect to persistence risk.

In sum, a model with learning about persistence generates two main implications for the behavior of equilibrium asset prices. First, all asset pricing moments (the risk premium, volatility, and the Sharpe ratio) are countercyclical. This is due to the asymmetric nature of
learning—negative shocks imply more persistence in bad times but less persistence in good times. It is a direct implication of Corollary 1.1.

The second implication, which is also unique to our model of learning about persistence, is that asset pricing moments are amplified around business cycle peaks and troughs—i.e., in unusually low and unusually high growth periods. These are periods when belief revisions are large. This implication follows from Corollary 1.2.

3 Predictions

An important question is whether the above implications are quantitatively large. In this section, we calibrate the model to U.S. output data and quantify the impact of learning about persistence on asset pricing moments.

3.1 Calibration

We use data from the Federal Reserve Bank of Philadelphia, at quarterly frequency from Q4:1968 to Q4:2016. The realized real GDP growth rate determines the growth rate of the output process δ_t.\(^{14}\) The mean analysts’ forecast for the 1-quarter-ahead real GDP growth rate constitutes our proxy for f_t. The difference between the 75th and 25th percentiles of analysts’ forecasts for the 1-quarter-ahead real GDP growth rate (the analysts’ forecasts dispersion) is our proxy for g_t.

Using the dynamics of the filter $\hat{\lambda}_t$ from Eq. (8), the dynamics of the uncertainty about λ_t from Eq. (9), and the filtered Brownian shocks from Proposition 1, we generate model-implied paths for $\hat{\lambda}_t$ and $\nu_{\lambda,t}$. We estimate the model by Maximum Likelihood (Hamilton, 1994) and determine the values of the parameters that provide the closest fit to realized observations. The uncertainty about λ_0 (i.e., the prior value of uncertainty) is set to the steady-state value,\(^ {15}\) whereas the prior value $\hat{\lambda}_0$ is set to the long-term mean, which is zero. Details about the estimation are provided in Appendix C.

Table 1 reports the estimated parameters, and Figure 1 displays the time series of the state variables.\(^ {16}\) The estimated average degree of persistence is much lower than what is typically considered in the long-run risk literature. The long-term mean of the mean-

\(^{14}\)Using output rather than consumption data allows us to exploit a longer sample period (the time series of consumption forecasts starts only in Q3:1981).

\(^{15}\)We assume that the agent considers a (local) steady state when computing the prior on uncertainty about the mean-reversion speed. That is, the uncertainty about λ_t at time $t = 0$ is the positive root of the polynomial obtained when $\frac{d\nu_{\lambda,t}}{dt} = 0$. Uncertainty about persistence initially starts at this level, $\nu_{\lambda,0}$, and then dynamically evolves according to Eq. (9).

\(^{16}\)See also Table A2 in Appendix C.1 for the descriptive statistics and further discussion of these variables.
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volatility of output growth</td>
<td>σ_δ</td>
<td>0.0143***</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(28.00)</td>
</tr>
<tr>
<td>Long-term growth rate</td>
<td>\bar{f}</td>
<td>0.0280***</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(13.70)</td>
</tr>
<tr>
<td>Volatility of growth forecast</td>
<td>σ_f</td>
<td>0.0247***</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(27.22)</td>
</tr>
<tr>
<td>Long-term reversion speed</td>
<td>$\bar{\theta}$</td>
<td>1.4102***</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(9.08)</td>
</tr>
<tr>
<td>Volatility of reversion speed</td>
<td>σ_λ</td>
<td>0.7304***</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(9.56)</td>
</tr>
<tr>
<td>Reversion speed of reversion speed</td>
<td>κ</td>
<td>0.2599***</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(7.33)</td>
</tr>
<tr>
<td>Correlation between forecast and disagreement</td>
<td>ρ</td>
<td>-0.1602***</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(10.27)</td>
</tr>
<tr>
<td>Long-term disagreement</td>
<td>$\bar{\gamma}$</td>
<td>0.0138***</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(9.23)</td>
</tr>
<tr>
<td>Reversion speed of disagreement</td>
<td>κ_γ</td>
<td>1.1915***</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(2.67)</td>
</tr>
<tr>
<td>Volatility of disagreement</td>
<td>σ_γ</td>
<td>0.0129***</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(10.04)</td>
</tr>
</tbody>
</table>

Table 1: Parameter estimates

This table reports the estimates of the model parameters, obtained by Maximum Likelihood, for the period Q4:1968 to Q4:2016. *t*-statistics are reported in brackets, and statistical significance at the 10%, 5%, and 1% levels is denoted by *, **, and ***, respectively.

reversion speed is $\bar{\theta} = 1.41$ (it is approximately 0.25 in long-run risk models—e.g., Bansal and Yaron 2004). Overall, the estimation indicates a low degree of persistence in the growth forecast on average, but this persistence is significantly time varying (Figure 1, panel a), as confirmed by the high and statistically significant level of volatility σ_λ. The uncertainty about the mean-reversion speed (Figure 1, panel c) also exhibits strong time variation. Finally, the level of disagreement among forecasters is countercyclical, as the correlation ρ is negative. This finding is consistent with previous studies: van Nieuwerburgh and Veldkamp (2006) find that the dispersion of GDP forecasts across a panel of forecasters is higher during recessions; Bloom (2014) confirms this result for forecasts of U.S. industrial production growth, and the same holds for European countries (Bachmann, Elstner, and Sims, 2013). Thus, disagreement about expected growth increases during downturns.

We generate theoretical predictions using the calibration provided in Table 1. We set the risk aversion to $\gamma = 10$ and the elasticity of intertemporal substitution (EIS) to $\psi = 1.5$. The leverage parameter is set to $\eta = 7$, the subjective discount rate to $\beta = 0.02$, and $\beta_d = 0.15$.

15
Figure 1: Historical paths of the state variables.
This figure plots the time series of the state variables, from Q4:1968 to Q4:2016. Panel (a) reports the filtered demeaned mean-reversion speed of the output growth forecast. Panel (b) reports the output growth rate. Panel (c) reports the uncertainty about the mean-reversion speed. Panel (d) reports the 1-quarter-ahead forecast of output growth.

This implies a dividend growth volatility of 10%, which is a lower bound of what is typically considered. The parameters β_d and β are chosen to obtain reasonable values for the average wealth-consumption ratio (Lustig, Van Nieuwerburgh, and Verdelhan, 2013), price-dividend ratio, and dividend growth rate, which are approximately 80, 40, and 5% in our model.

3.2 Asset pricing implications

We now use the calibrated economy to quantify the stock return volatility (Eq. 29), the equity risk premium (Eq. 31), and the equilibrium Sharpe ratio (Eq. 32). The three panels in Figure 2 depict these theoretical asset pricing moments as a function of the forecast f_t.

17 Beeler and Campbell (2012) report values from 11% to 27%; the CRSP dividend growth volatility is 19%.

18 Appendix B.3 provides additional results for the log price-dividend ratio and the risk-free rate.
Figure 2: Asset pricing with learning about persistence.
This figure shows how the stock return volatility, the risk premium, and the Sharpe ratio vary with the economic growth forecast. For the three panels, we fix \(\hat{\lambda}_t = 0 \) and plot asset pricing moments against the growth forecast \(f_t \) for three different values of \(\nu_{\lambda,t} \) (the upper bound of \(\nu_{\lambda,t} \) is \(\sigma_\lambda^2/(2\kappa) = 1.02 \)). We use the calibration provided in Table 1.

For these plots, we set the filter \(\hat{\lambda}_t \) at zero, which implies that the mean-reversion speed equals its long-term mean, \(\hat{\theta}_t = \overline{\theta} \). The three lines in each panel correspond to various levels of uncertainty about persistence, \(\nu_{\lambda,t} \).

Asset pricing moments are almost constant when \(\nu_{\lambda,t} = 0 \). In this case, there is no uncertainty about persistence and none of the asset pricing moments depends on the state of the economy. In contrast, in presence of uncertainty about persistence (\(\nu_{\lambda,t} > 0 \)), asset pricing moments become, on average, countercyclical—they are higher when the growth forecast is lower. This relationship arises from the asymmetric formation of beliefs described in Corollary 1.1: negative forecast shocks imply more persistence when \(f_t < \overline{f} \) but less persistence when \(f_t > \overline{f} \). When the Epstein-Zin agent dislikes persistence, negative shocks become particularly bad in bad times but not as bad in good times. This asymmetry generates countercyclical asset pricing moments. Moreover, higher uncertainty about persistence strengthens the negative relationship between asset pricing moments and the forecast. This occurs because higher uncertainty magnifies the asymmetric effect of learning.

Figure 2 further shows that the relationship between asset pricing moments and economic conditions is U-shaped. This pattern arises because the informativeness of forecast shocks is particularly high in extreme times, when the forecast is well above or well below its long-term mean. These are periods when forecast shocks trigger large belief revisions (Corollary 1.2); in turn, large belief revisions increase asset pricing moments. The U-shaped pattern is particularly pronounced when uncertainty about persistence is high, because higher uncertainty implies greater changes in beliefs. Overall, learning about persistence implies that asset
pricing moments depend on the current state of the economy in a non-monotonic way. In equilibrium, the asymmetric formation of beliefs increases risk in bad times. Risk further increases around business cycle peaks and troughs, yielding a U-shaped relationship.

We reformulate these theoretical predictions in terms of persistence risk. As Eqs. (29) and (31) show, persistence risk is a direct driver of asset pricing moments, which allows us to develop a set of testable predictions. First, the negative relationship between asset pricing moments and the forecast implies a positive relationship between asset pricing moments and persistence risk. Second, the model implies a U-shaped (quadratic) relationship between asset pricing moments and persistence risk. Third, the relationship between asset pricing moments and persistence risk strengthens in extreme times, when shocks are more informative about persistence. Finally, uncertainty about persistence resolves more rapidly when belief revisions are large (Corollary 1.3), which induces a negative relation between uncertainty about persistence and asset pricing moments.

4 Evidence

We now turn to the empirical evaluation of our model. We start by examining how the model-implied asset prices compare to their empirical counterparts. We then test how the risk premium, the stock return volatility, and the Sharpe ratio vary with persistence risk and the uncertainty about persistence. Finally, we analyze the return predictability of persistence risk.

4.1 Data

The empirical analysis is based on quarterly U.S. data over the period Q1:1969–Q4:2016. The estimation performed in Section 3.1 provides time series of the filtered mean-reversion speed \(\hat{\lambda}_t \) and persistence risk, \(PR_t \equiv (\bar{f} - f_t)\nu_{\lambda,t} \). Using our state variables, we construct model-implied time series for the risk premium, Sharpe ratio, stock return volatility, price-dividend ratio, and risk-free rate.

For the empirical counterparts of these asset pricing quantities, we compute quarterly stock returns and dividend growth from the value-weighted CRSP index, which covers NYSE, Amex, and Nasdaq data, and convert them into real terms using the consumer price index (CPI). We create a proxy for the ex ante risk-free rate by forecasting the ex post quarterly real return on three-month Treasury bills with the previous year’s inflation and the most recent available three-month nominal bill yield (Beeler and Campbell, 2012).

The price-dividend ratio is the price in the last month of the quarter divided by the sum
of dividends paid in the last twelve months. Our proxy for the risk premium is the fitted value obtained by regressing excess stock returns on the lagged dividend yield (inverse of the price-dividend ratio), the lagged default premium (Baa yield minus ten-year government bond yield), and stock return volatility.\footnote{This choice is based on empirical evidence that the dividend yield (Fama and French, 1988), the default premium (Fama and French, 1989), and the level of stock market volatility (French, Schwert, and Stambaugh, 1987) have predictive power for stock market returns.} Stock return volatility is the conditional volatility of real stock returns estimated with an exponential GARCH(1,1) to account for asymmetry in the sensitivity of variance to news (Nelson, 1991). The data construction is described in detail in Appendix D. All variables are measured in real terms.

4.2 Descriptive analysis of asset pricing moments

In a first analysis, we compare the model-implied asset pricing moments with their empirical counterparts. Table 2 presents unconditional descriptive statistics.

The model generates an average risk premium of 6.3\% and a stock return volatility of 20.6\%. With the exception of the risk-free rate (for which the model delivers the volatility but not the level) and the price-dividend ratio (for which the model delivers the level but not the volatility), the asset pricing moments implied by our model are reasonably close to the data. Note that the standard deviation of the log price-dividend ratio is low but similar to that obtained in Bansal and Yaron (2004) and Bansal et al. (2012), although our model does not assume time variation in output growth volatility. In Table 3, we regress observed moments on model-implied moments. Except for the risk-free rate, all slopes are positive and statistically significant.

Overall, a model with learning about persistence generates reasonable asset pricing moments, both in terms of levels and dynamics, despite that we did not use financial market data in the estimation of our model: the model-implied asset pricing moments are obtained only after we calibrate the economy using data on the real GDP growth rate, the mean forecast, and the disagreement across analysts.

4.3 Asset pricing with persistence risk

We now test the theoretical implications of learning about persistence. Specifically, the model predicts that the risk premium, the stock return volatility, and the Sharpe ratio vary with persistence risk, \(PR_t \equiv (\bar{f} - f_t)\nu_{\lambda,t} \).

As a preliminary exercise, we split the sample into two parts according to the level of persistence risk, above and below the median. Table 4 compares the conditional asset
<table>
<thead>
<tr>
<th>Variable</th>
<th>Mean</th>
<th>Std dev.</th>
<th>Median</th>
<th>5-percentile</th>
<th>95-percentile</th>
</tr>
</thead>
<tbody>
<tr>
<td>Risk premium</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data</td>
<td>0.0447</td>
<td>0.0574</td>
<td>0.0419</td>
<td>-0.0342</td>
<td>0.1515</td>
</tr>
<tr>
<td>Model</td>
<td>0.0626</td>
<td>0.0570</td>
<td>0.0491</td>
<td>0.0271</td>
<td>0.1833</td>
</tr>
<tr>
<td>Stock return volatility</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data</td>
<td>0.1708</td>
<td>0.0443</td>
<td>0.1573</td>
<td>0.1263</td>
<td>0.2602</td>
</tr>
<tr>
<td>Model</td>
<td>0.2056</td>
<td>0.0735</td>
<td>0.1914</td>
<td>0.1380</td>
<td>0.3772</td>
</tr>
<tr>
<td>Sharpe ratio</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data</td>
<td>0.2333</td>
<td>0.2993</td>
<td>0.2446</td>
<td>-0.2766</td>
<td>0.7366</td>
</tr>
<tr>
<td>Model</td>
<td>0.2740</td>
<td>0.0860</td>
<td>0.2560</td>
<td>0.1960</td>
<td>0.4839</td>
</tr>
<tr>
<td>Log (P/D)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data</td>
<td>3.6390</td>
<td>0.4021</td>
<td>3.6304</td>
<td>3.0266</td>
<td>4.3087</td>
</tr>
<tr>
<td>Model</td>
<td>3.7640</td>
<td>0.1505</td>
<td>3.7852</td>
<td>3.4856</td>
<td>3.9450</td>
</tr>
<tr>
<td>Real risk-free rate</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data</td>
<td>0.0071</td>
<td>0.0094</td>
<td>0.0073</td>
<td>-0.0231</td>
<td>0.0393</td>
</tr>
<tr>
<td>Model</td>
<td>0.0343</td>
<td>0.0119</td>
<td>0.0347</td>
<td>0.0089</td>
<td>0.0540</td>
</tr>
</tbody>
</table>

Table 2: Descriptive analysis of asset pricing moments.
This table reports the unconditional asset pricing moments in the model and in the data. The statistics are based on quarterly data and are annualized. All values are in real terms. The construction of the empirical moments is detailed in Appendix D. Stock prices represent the value-weighted CRSP index, and the sample spans the period Q1:1969–Q4:2016.

pricing moments, in the model and the data. Asset pricing moments increase in times of higher persistence risk. The differences are statistically and economically significant in all cases. In times of high persistence risk, the risk premium, the stock return volatility, and the Sharpe ratio are higher by 2.01%, 2.12%, and 7.18%, respectively. In addition, the last column of Table 4 shows that the variance of asset pricing moments also increases when persistence risk is higher. This implies that asset pricing moments tend to fluctuate more when persistence risk increases.

Panel A of Table 5 presents regression results that confirm the positive relationship between asset pricing moments and persistence risk. Stock return volatility, the risk premium, and the Sharpe ratio increase in persistence risk, with statistically and economically significant coefficients. For instance, a one-standard-deviation increase in persistence risk (0.0091) widens the empirical equity risk premium by 1.61%. These results confirm our model’s prediction that aggregate risk increases when persistence risk is high.
Table 3: Empirical vs. model-implied asset pricing quantities.

This table reports the relationships between the model-implied asset pricing quantities and their empirical counterparts. Observed moments are regressed on model-implied moments. The t-statistics are computed with Newey and West (1987) standard errors. Statistical significance at the 10%, 5%, and 1% levels is denoted by *, **, and ***, respectively. The construction of the empirical moments is discussed in Appendix D. Stock prices represent the value-weighted CRSP index, and the sample spans the period Q1:1969–Q4:2016.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Risk premium</th>
<th>Stock return volatility</th>
<th>Sharpe ratio</th>
<th>Log (P/D)</th>
<th>Risk-free rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constant</td>
<td>0.022***</td>
<td>0.138***</td>
<td>0.021</td>
<td>1.584***</td>
<td>0.001</td>
</tr>
<tr>
<td>t-stat</td>
<td>2.639</td>
<td>11.757</td>
<td>0.248</td>
<td>2.984</td>
<td>0.511</td>
</tr>
<tr>
<td>Slope</td>
<td>0.358***</td>
<td>0.160***</td>
<td>0.776***</td>
<td>0.546***</td>
<td>0.036</td>
</tr>
<tr>
<td>t-stat</td>
<td>2.585</td>
<td>2.768</td>
<td>2.698</td>
<td>3.833</td>
<td>1.221</td>
</tr>
<tr>
<td>R-squared</td>
<td>0.126</td>
<td>0.070</td>
<td>0.050</td>
<td>0.042</td>
<td>0.008</td>
</tr>
<tr>
<td>N</td>
<td>192</td>
<td>192</td>
<td>192</td>
<td>192</td>
<td>192</td>
</tr>
</tbody>
</table>

Table 4: Conditional asset pricing moments.

This table reports the asset pricing moments conditional on persistence risk. The sample is split into two parts based on the median of $(\bar{f} - f_t)\nu_{\lambda,t}$. High values correspond to periods of high persistence risk, whereas low values reflect times of low persistence risk. The means and standard deviations (Std) are based on quarterly data and are annualized. For the last two columns, statistical significance at the 10%, 5%, and 1% levels is denoted by *, **, and ***, respectively. Stock prices represent the value-weighted CRSP index, and the sample spans the period Q1:1969–Q4:2016.

<table>
<thead>
<tr>
<th>Variable</th>
<th>High pers. risk</th>
<th>Low pers. risk</th>
<th>High-minus-low</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean</td>
<td>Std</td>
<td>Mean</td>
</tr>
<tr>
<td>Risk premium Data</td>
<td>0.0547</td>
<td>0.0652</td>
<td>0.0346</td>
</tr>
<tr>
<td>Model</td>
<td>0.0821</td>
<td>0.0747</td>
<td>0.0431</td>
</tr>
<tr>
<td>Stock return volatility Data</td>
<td>0.1814</td>
<td>0.0524</td>
<td>0.1602</td>
</tr>
<tr>
<td>Model</td>
<td>0.2356</td>
<td>0.0907</td>
<td>0.1755</td>
</tr>
<tr>
<td>Sharpe ratio Data</td>
<td>0.2692</td>
<td>0.3226</td>
<td>0.1973</td>
</tr>
<tr>
<td>Model</td>
<td>0.3078</td>
<td>0.1068</td>
<td>0.2402</td>
</tr>
</tbody>
</table>

4.3.1 U-shaped relationships

We now test the model prediction that the relationship between asset pricing moments and persistence risk is non-linear. As suggested by our theory, panel B of Table 5 introduces a
Table 5: Asset pricing moments and persistence risk.

This table reports the relations between the asset pricing moments and persistence risk, which is defined by \(PR_t \equiv (\bar{f} - f_t) \nu_{\lambda,t} \). \(N \) is the number of observations. The t-statistics are computed with Newey and West (1987) standard errors. Statistical significance at the 10%, 5%, and 1% levels is denoted by *, **, and ***, respectively. The construction of the empirical moments is discussed in Appendix D. Stock prices represent the value-weighted CRSP index, and the sample spans the period Q1:1969–Q4:2016.

<table>
<thead>
<tr>
<th></th>
<th>Risk premium</th>
<th>Return volatility</th>
<th>Sharpe ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Model</td>
<td>Data</td>
<td>Model</td>
</tr>
<tr>
<td>Panel A: Linear relationship</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(PR_t)</td>
<td>4.059***</td>
<td>1.769***</td>
<td>5.548***</td>
</tr>
<tr>
<td>t-stat</td>
<td>5.433</td>
<td>2.949</td>
<td>6.780</td>
</tr>
<tr>
<td>R-squared</td>
<td>0.416</td>
<td>0.078</td>
<td>0.467</td>
</tr>
<tr>
<td>N</td>
<td>192</td>
<td>192</td>
<td>192</td>
</tr>
<tr>
<td>Panel B: Quadratic relationship</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(PR_t)</td>
<td>2.211***</td>
<td>0.890**</td>
<td>3.258***</td>
</tr>
<tr>
<td>t-stat</td>
<td>7.274</td>
<td>2.293</td>
<td>8.297</td>
</tr>
<tr>
<td>(PR_t^2)</td>
<td>254.9***</td>
<td>120.0***</td>
<td>315.9***</td>
</tr>
<tr>
<td>R-squared</td>
<td>0.763</td>
<td>0.153</td>
<td>0.787</td>
</tr>
<tr>
<td>N</td>
<td>192</td>
<td>192</td>
<td>192</td>
</tr>
</tbody>
</table>

The quadratic term in the regressions. The results offer strong empirical evidence in support of non-linearity: the quadratic term is statistically significant for all moments, in the model and in the data. Furthermore, accounting for a quadratic term helps explain a larger fraction of the time variation in asset pricing moments, as measured by the increase in the R-squared coefficients from panel A to panel B. In the data, the explanatory power doubles for the risk premium and triples for the Sharpe ratio.

Our model predicts that periods of particularly negative persistence risk are also associated with a high risk premium and volatility. These are periods of intense economic growth. The reason is that news is particularly informative during both very bad and very good times, thus generating strong variability in beliefs about persistence around business cycle peaks and troughs. We thus expect a U-shaped relationship between asset pricing moments and persistence risk, whereby large absolute values of persistence risk generate high asset pricing...
Table 6: U-shaped relationship between asset pricing moments and persistence risk.
This table reports the U-shaped relationship between the asset pricing moments and persistence risk, defined as $PR_t \equiv (f - f_t)\nu_{\lambda,t}$. Panel A shows the results for low persistence risk (bottom quartile), while panel B reports results for the remaining observations (top three quartiles of persistence risk). N is the number of observations. The t-statistics are computed with Newey and West (1987) standard errors. Statistical significance at the 10%, 5%, and 1% levels is denoted by *, **, and ***, respectively. The construction of the empirical moments is discussed in Appendix D. Stock prices represent the value-weighted CRSP index, and the sample spans the period Q1:1969–Q4:2016.

Table 6 validates this prediction, both in the model and in the data. It reports the results from regressing asset pricing moments on persistence risk for two subsamples: the bottom quartile of persistence risk (i.e., very good times) in panel A and the remaining observations in panel B. The sign change across the two subsamples provides evidence of a U-shaped relationship, which is particularly strong for the risk premium and the Sharpe ratio. This non-monotonicity confirms a prediction that is unique to our model with learning about persistence. Alternative specifications in a complete information environment (e.g., time-varying preferences, stochastic volatility, disaster risk) typically generate a monotone relationship between asset pricing moments and economic conditions.
<table>
<thead>
<tr>
<th></th>
<th>Risk premium</th>
<th>Return volatility</th>
<th>Sharpe ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Model</td>
<td>Data</td>
<td>Model</td>
</tr>
<tr>
<td>Panel A: Persistence uncertainty</td>
<td>λ,ν,t</td>
<td>-0.097***</td>
<td>-0.125***</td>
</tr>
<tr>
<td>R-squared</td>
<td>0.108</td>
<td>0.181</td>
<td>0.101</td>
</tr>
<tr>
<td>N</td>
<td>192</td>
<td>192</td>
<td>192</td>
</tr>
<tr>
<td>Panel B: Persistence uncertainty and economic conditions</td>
<td>λ,ν,t</td>
<td>-0.075***</td>
<td>-0.116***</td>
</tr>
<tr>
<td>ft</td>
<td>-2.310***</td>
<td>-0.928***</td>
<td>-3.049***</td>
</tr>
<tr>
<td>R-squared</td>
<td>0.556</td>
<td>0.252</td>
<td>0.573</td>
</tr>
<tr>
<td>N</td>
<td>192</td>
<td>192</td>
<td>192</td>
</tr>
</tbody>
</table>

Table 7: Asset pricing moments and uncertainty about persistence. This table reports the relationships between the asset pricing moments and uncertainty about persistence $\nu_{\lambda,t}$. Panel A reports the univariate regression results, while panel B controls for the growth forecast f_t. N is the number of observations. The t-statistics are computed with Newey and West (1987) standard errors. Statistical significance at the 10%, 5%, and 1% levels is denoted by *, **, and ***, respectively. The construction of the empirical moments is discussed in Appendix D. Stock prices represent the value-weighted CRSP index, and the sample spans the period Q1:1969–Q4:2016.

4.3.2 Role of persistence uncertainty

Another specific implication of learning about persistence is that asset pricing moments decrease with the uncertainty about persistence. From (29)–(31), asset pricing moments increase in the conditional variance of the filter $\text{Var}_t[d\hat{\lambda}_t]$. Moreover, from Corollary 1.3, the conditional variance of the filter reduces the uncertainty about persistence $\nu_{\lambda,t}$ (uncertainty resolves faster with larger belief revisions). The combination of the two effects yields a negative relationship between asset pricing moments and uncertainty about persistence.

We test this prediction in panel A of Table 7. Uncertainty about persistence is indeed negatively related to the equity risk premium, the volatility, and the Sharpe ratio. All slope coefficients are significant, in the model and in the data. A one-standard-deviation increase in uncertainty about persistence (0.196) reduces the equity risk premium by 2.45%. The data thus confirm the theoretical prediction that learning creates a negative relationship...
between asset pricing moments and uncertainty about persistence.

The impact of $\nu_{\lambda,t}$ on asset pricing moments remains robust when including f_t to control for changes in economic conditions (panel B). This analysis confirms that the uncertainty about persistence drives asset pricing moments beyond the business cycle fluctuations that are generated by f_t. This implies that fluctuations in persistence risk capture not only variations in economic conditions but also changes in persistence uncertainty and provides further support for our channel of learning about persistence.

4.4 Return predictability

The previous section provides evidence that changes in persistence risk generate fluctuations in expected excess returns. Persistence risk should then predict future excess returns. We now test the model by evaluating the return predictability of persistence risk and contrast the results with the return predictability of the price-dividend ratio.

4.4.1 Return predictability with persistence risk

We consider the following regression specification, at a quarterly frequency:

$$\sum_{k=1}^{K} (r_{t+k} - r_{f,t+k}) = a_K + b_K PR_t + \epsilon_{t+K}, \quad (33)$$

where r_{t+k} and $r_{f,t+k}$ are the log real return and real risk-free rate for quarter $t+k$. We consider different horizons: 1 year, 3 years, 5 years, and 7 years.

Table 8 reports the results, which are displayed in panel A for the model and panel B for the data. Both panels show that persistence risk generates strong return predictability. Persistence risk is highly statistically significant, particularly beyond the one-year horizon. In the data, at the 5-year horizon, a one-standard-deviation increase in persistence risk (0.0091) is associated with a cumulative excess return of 7.56%; the associated R^2 is 5.4%.

The results are similar when we include controls, which indicates that persistence risk contains additional information for explaining future excess returns, beyond what is already embedded in the price-dividend ratio, the current level of stock return volatility, or the level of macroeconomic uncertainty.

20 The results are also robust to controlling for NBER recessions.

21 For robustness, we also consider a set of control variables that are expected to have predictive power in the data. Consistent with our construction of the risk premium in Section 4.1, the controls include the price-dividend ratio (Fama and French, 1988), stock market volatility (French et al., 1987), and the default premium (Fama and French, 1989). Because persistence risk is a measure of economic uncertainty, we also control for the macro uncertainty index of Jurado et al. (2015). Table A3 reports the results in the data when using such controls.
Table 8: Predictability of excess returns with persistence risk.

This table shows the predictability of cumulative future excess stock returns with persistence risk, as measured by $PR_t = (\bar{f} - f_t)\nu_{t}$. Panel A reports the regression estimates in the model, while panel B reports the results based on empirical data. Each column represents a different forecast horizon K, and N is the number of observations. t-statistics are computed with Newey and West (1987) standard errors with $2(K - 1)$ lags. Statistical significance at the 10%, 5%, and 1% levels is denoted by *, **, and ***, respectively. The construction of the empirical moments is discussed in Appendix D. Stock prices represent the value-weighted CRSP index, and the sample spans the period Q1:1969–Q4:2016.

Importantly, our measure of persistence risk is only driven by shocks to the real economy (based on realizations and forecasts of output growth). Moreover, this predictability arises only when agents face uncertainty about persistence—if persistence is observable, $\nu_{t} = 0$, and the role of persistence risk disappears. These results therefore show that investors are compensated for the risk premium that they demand for bearing persistence risk.

4.4.2 Asymmetric predictability: high vs. low informative times

When learning about persistence, not all forecast shocks are equally informative. When $f_t = \bar{f}$, changes in the forecast f_t are uninformative for the agent because she is unable to learn about the mean-reversion speed. As Corollary 1.2 shows, however, news become particularly informative for large absolute values of $\bar{f} - f_t$. During extreme times, learning about persistence has the greatest impact on asset prices, and the relationship between the risk premium and persistence risk strengthens. Thus, the predictability of future excess returns is expected to be concentrated during times when the expected economic growth forecast is far from its long-term mean.

We test this prediction by decomposing the data into two subsamples. We first consider the observations when f_t is far from the long-term average, as determined by the bottom and the top quintiles of f_t. We refer to such periods as “high informative times.” Then, we consider the remaining observations when f_t is relatively close to the long-term average—
Table 9: Predictability of excess returns with persistence risk—asymmetry.
This table reports the return predictability of persistence risk during high vs. low informative times. Persistence risk is given by $PR_t = (\bar{f} - f_t)\nu_{f,t}$. High informative times correspond to observations when the growth forecast f_t falls into its bottom or top quintiles. Low informative times include the remaining observations. Panel A reports the results in the model and panel B those in the data. Each column represents a different forecast horizon K, and N is the number of observations. t-statistics are computed with Newey and West (1987) standard errors with $2(K-1)$ lags. Statistical significance at the 10%, 5%, and 1% levels is denoted by *, **, and ***, respectively. The construction of the empirical variables is discussed in Appendix D. Stock prices represent the value-weighted CRSP index, and the sample spans the period Q1:1969–Q4:2016.

“low informative times.” Based on this sample split, we estimate the following regression:

$$\sum_{k=1}^{K} (r_{t+k} - r_{f,t+k}) = a_K + b_K 1_{HIT} P R_t + c_K 1_{LIT} P R_t + \epsilon_{t+K},$$ \hspace{1cm} (34)

where 1_{HIT} and 1_{LIT} are dummies equal to one for observations during high (HIT) and low (LIT) informative times, respectively, and zero otherwise.

Table 9 shows that persistence risk is statistically significant for predicting future stock returns, but only during high informative times. This is when f_t is far from \bar{f}, either above or below.22 22Panel A shows that the finding is robust to forecast horizons ranging from 3 to 7 years. This prediction is well supported by the data (panel B), with or without controls.23 23

22Separating observations by low and high values of $(f - f_t)^2$, using the median or quartiles, yields similar results.

23In Table A4, we control for the log price-dividend ratio, the stock market volatility, the default premium, and the macro uncertainty index (Jurado et al., 2015). Including these controls strengthens our results.
Table 10: Predictive power (R^2) of persistence risk for excess returns.

This table reports the conditional predictive power of persistence risk. Predictive power is measured with the R^2 of the regression of future excess returns on persistence risk, defined as $(\bar{f} - f_t)\nu_{\lambda,t}$. We run separate regressions for high informative times, which correspond to times when f_t is far from \bar{f} (bottom and top quintiles), and low informative times, which correspond to times when f_t is close to \bar{f}. Panel A reports the results in the model and panel B those in the data. Each column represents a different forecast horizon K. The construction of excess returns is discussed in Appendix D. Stock prices represent the value-weighted CRSP index, and the sample spans the period Q1:1969–Q4:2016.

We also separately estimate the regressions during either high or low informative times and compare the R^2 statistics, following the predictability literature. Table 10 confirms that the predictive power is concentrated when economic news is informative for updating the degree of persistence. At the 5-year horizon, while the R^2 in the data is 5.4% unconditionally, the conditional R^2 is 16.1% when f_t is far from \bar{f} and 0% when f_t is close to \bar{f}.

Overall, these results endorse our theoretical message that persistence risk is an important determinant of future excess returns. Further, persistence risk better predicts future excess returns during high informative times—around business cycle peaks and troughs—than during times when f_t is close to its long-term mean. Importantly, the return predictability of persistence risk in our model is not unique to the sample period, i.e., Q1:1969–Q4:2016—we reach the same conclusion when we exploit finite-sample simulations of the model.

24 See Rapach, Strauss, and Zhou (2010); Henkel, Martin, and Nardari (2011); Dangl and Halling (2012).
25 The simulations consist of generating 100,000 time series of 192 quarters (the size of our sample period), using the discretization approach described in Appendix C. We generate time series of quarterly excess returns and run predictive regressions on the simulated data. The simulations confirm the results in Table 9, panel A (untabulated results).
4.4.3 Return predictability with the price-dividend ratio

There is strong empirical evidence of predictability of excess stock returns with the price-dividend ratio.26 We thus verify whether the price dividend ratio predicts future excess returns within our model. However, unlike for persistence risk, our model offers no theoretical justification for a stronger predictability of the price-dividend ratio in extreme times.27 Thus, when separating between low and high informative times, we expect the price-dividend ratio to remain equally informative about future returns. To test this, in specification (34), we replace persistence risk with the log price-dividend ratio. Panels A and B of Table 11 report results in the model and in the data.

The model implies strong predictability of excess returns with the price-dividend ratio. The relationships are negative and statistically significant at all horizons (1 year to 7 years), with R^2 coefficients ranging from 5% to 17%. These results are consistent with the data,26See Fama and French (1988); Hodrick (1992); Cochrane (2008); van Binsbergen and Koijen (2010); Beeler and Campbell (2012), among others. 27Persistence risk is not the sole driver of the price-dividend ratio. Instead, the price-dividend ratio jointly depends on f_t, λ_t, and $\nu_{\lambda,t}$.
whether or not we control for the level of stock market volatility, the default premium, and the macro uncertainty index of Jurado et al. (2015) (see Table A5).

Furthermore, there is no asymmetry in the predictive relationship when we use the price-dividend ratio. The estimates are remarkably close across the two subsamples, both in the model and in the data. The finding that the return predictability of the price-dividend ratio remains similar across economic conditions indicates that the predictability of persistence risk is a unique implication of our model with uncertainty about persistence. Learning about persistence matters most during unusually bad and good economic conditions, and our measure of persistence risk captures this. Thus, persistence risk is a novel source of risk that is priced in the equity market, particularly around business cycle peaks and troughs.

5 Alternative setups

We compare our model with several alternative specifications. We analyze a model without learning in Section 5.1. In Section 5.2, we consider a setup in which the agent learns about the level of expected output growth. In Section 5.3, we build a setting with time-varying, but observable persistence. In Section 5.4, we compare our model against two benchmarks that successfully deliver a countercyclical price of risk: the habit model (Chan and Kogan, 2002) and the long-run risk model (Bansal and Yaron, 2004).

5.1 A model without learning

We first analyze the most basic benchmark: an economy with complete information. In this standard case, the agent observes both the aggregate output and its expected growth:

\[
\begin{align*}
 d\delta_t/\delta_t &= f_t dt + \sigma_\delta dW^\delta_t, \\
 df_t &= \bar{\theta}(\bar{f} - f_t) dt + \sigma_f dW^f_t.
\end{align*}
\]

As in our main model, the two Brownian motions \(W^\delta_t \) and \(W^f_t \) are mutually independent.

The volatility of stock returns and the risk premium are given by

\[
\begin{align*}
 ||\sigma_t||^2 &= \eta^2 \sigma^2_\delta + \left(\frac{\sigma_f}{\Pi_f} \Pi_f \right)^2, \\
 RP_t &= \gamma \eta \sigma^2_\delta + (1 - \phi) \sigma^2_f \frac{I_f}{\Pi_f}.
\end{align*}
\]

28The closest model in the literature is Case I in Bansal and Yaron (2004).
The volatility, the risk premium and the Sharpe ratio in this economy are depicted by dashed lines in the three panels of column (a) in Figure 3, as functions of the expected growth rate f_t. We use the calibration from Table 1. For comparison, we add solid lines that represent the asset pricing moments of our model with learning about persistence.

It is clear from the plots, and directly from Eqs. (37)–(38), that a model with perfect information does not produce any variation in asset pricing moments.

5.2 A model with learning about the level of expected growth

We now turn to the case with learning about the level of expected output growth. Uncertainty about the level of expected growth is the premise of a large incomplete information literature and therefore constitutes an important benchmark.\(^29\)

The aggregate output and the expected growth rate evolve as in (35)–(36), but the expected growth rate f_t is unobservable. The agent learns from output realizations.\(^30\) Standard filtering implies

\[
d\hat{f}_t = \bar{\theta}(\bar{f} - \hat{f}_t)dt + \frac{\bar{\nu}_f}{\bar{\sigma}_\delta}d\hat{W}_t^\delta,
\]

where $d\hat{W}_t^\delta$ is the output growth innovation under the filtration of the agent, and $\bar{\nu}_f$ is the steady-state level of uncertainty about f_t:

\[
\bar{\nu}_f \equiv \sigma_\delta \sqrt{\left(\bar{\theta}\sigma_\delta\right)^2 + \sigma_f^2 - \bar{\theta}\sigma_\delta^2}.
\]

Note that the uncertainty about the level of expected output growth converges to a stationary solution. This is a common result in most settings with incomplete information.

The equilibrium solution follows standard steps. We write directly the volatility of stock returns and the risk premium in this economy:

\[
\sigma_t^2 = \left(\eta \sigma_\delta + \frac{\bar{\nu}_f}{\bar{\sigma}_\delta} \frac{\Pi}{\Pi}\right)^2,
\]

\[
RP_t = \left(\eta \sigma_\delta + \frac{\bar{\nu}_f}{\bar{\sigma}_\delta} \frac{\Pi}{\Pi}\right) \left(\gamma \sigma_\delta + (1 - \phi) \frac{\bar{\nu}_f}{\bar{\sigma}_\delta} \frac{I}{I}\right).
\]

\(^{30}\)An alternative is to assume that the agent observes a forecast of the expected growth rate and that this forecast is measured with error—i.e., the agent learns from two signals. This alternative setup yields similar results. We choose the current setup to remain closer to the existing literature.
Eqs. (41)–(42) show that a model with learning about the level of expected growth does not generate fluctuations in volatility, the risk premium, or the Sharpe ratio, beyond the fluctuations that arise from the partial derivatives of the price-dividend ratio and of the wealth-consumption ratio. We expect these fluctuations to be relatively weak (they are zero with a log-linear approximation). Hence, standard models with learning about the level of expected growth do not generate significant time variation in asset pricing moments.\footnote{An exception is the class of models in which the expected growth rate follows a process with unobservable regime shifts (Veronesi, 1999, 2000). These models successfully generate time-varying uncertainty, volatility clustering, and time-varying expected returns. However, the implications of these alternative models are the opposite of ours: in Veronesi (1999), the reaction to news is high in good times and low in bad times. Furthermore, models with regime shifts tend to generate an inverse U-shaped relationship between fundamentals and asset pricing moments (see also Cagetti, Hansen, Sargent, and Williams, 2002).}

The three plots of column (a) in Figure 3 confirm this result. For these plots, we use the same calibration as in Table 1. The dotted lines show that learning about the level of expected growth does not generate variations in asset pricing moments.

5.3 A model with time-varying but observable persistence

We consider an alternative model in which the persistence is time varying but observable. Starting with the two processes (3)–(4) of our main model, this alternative specification features an additional, observable state variable λ_t: \[
d\lambda_t = -\kappa \lambda_t dt + \sigma_\lambda \delta_\lambda dW^f_t + \sigma_\lambda \sqrt{1 - \delta_\lambda^2} dW^\lambda_t.
\] (43)

We allow for an exogenous correlation δ_λ between the expected growth and its persistence. We consider positive values for this correlation (i.e., persistence increases after negative shocks). This model therefore has a built-in asymmetry: it generates stronger persistence during bad times and thus induces countercyclicality in asset pricing moments. Our aim is to evaluate whether it is able to generate results that are comparable with those obtained by a model with learning about persistence.

The price-dividend ratio in this economy $\Pi(f_t, \lambda_t)$ depends on two state variables, f_t and λ_t. Because these variables are driven by the Brownian motions W^f_t and W^λ_t, the price-dividend ratio has two diffusion components:

\[\sigma_{\Pi f} = \sigma_f \frac{\Pi_f}{\Pi} + \delta_\lambda \sigma_\lambda \frac{\Pi_\lambda}{\Pi} \] (44)
\[\sigma_{\Pi \lambda} = \sqrt{1 - \delta_\lambda^2} \frac{\Pi_\lambda}{\Pi}. \] (45)

Assuming that $\delta_\lambda > 0$, the first diffusion term, $\sigma_{\Pi f}$, is larger due to fluctuations in λ_t:...
negative expected growth shocks increase persistence, whereas positive expected growth shocks decrease persistence; the impact of these shocks is therefore amplified by the positive correlation δ. Yet, direct comparison of this diffusion term with its counterpart in the presence of learning about persistence (Eq. 26) reveals that our key mechanism arises only when λ_t is unobservable. It is only in this case that persistence risk directly enters into the diffusion of the price-dividend ratio in Eq. (26) and magnifies it during bad times. In contrast, when λ_t is observable, the amplification occurs at all times. Consequently, this model cannot generate significant asymmetry in asset pricing moments.

It might nevertheless be the case that an (indirect) asymmetry arises through the partial derivatives of the price-dividend ratio in (44)-(45). To investigate this possibility, we solve the model for two different values of the correlation parameter, $\delta \in \{0.5, 1\}$. We use the parameters from Table 1. The solution method follows the same steps as in our main model.

In this model, the stock return volatility is

$$||\sigma_t||^2 = \eta^2 \sigma_\delta^2 + \left(\sigma_f \frac{\Pi_f}{\Pi} + \delta_\lambda \sigma_\lambda \frac{\Pi_\lambda}{\Pi} \right)^2 + (1 - \delta_\lambda^2) \sigma_\lambda^2 \left(\frac{\Pi_\lambda}{\Pi} \right)^2,$$

whereas the risk premium is given by:

$$RP_t = \gamma \eta \sigma_\delta^2 + (1 - \phi) \left[\left(\sigma_f \frac{I_f}{T} + \delta_\lambda \sigma_\lambda \frac{I_\lambda}{T} \right) \left(\sigma_f \frac{\Pi_f}{\Pi} + \delta_\lambda \sigma_\lambda \frac{\Pi_\lambda}{\Pi} \right) + (1 - \delta_\lambda^2) \sigma_\lambda^2 \frac{I_\lambda \Pi_\lambda}{T} \right].$$

The three panels in column (b) of Figure 3 depict the results. We plot the asset pricing moments as functions of f_t for $\delta \in \{0.5, 1\}$. This alternative model delivers an asymmetry, albeit less pronounced than the asymmetry from learning about persistence. More important, this model does not deliver the U-shaped relationships when $f_t \gg \bar{f}$ or $f_t \ll \bar{f}$. This is one of the main implications of our model with learning about persistence (Corollary 1.2), and is supported by the data (Tables 6 and 7). It is therefore learning about persistence that induces strong variations in equilibrium risk premia and return volatility, not the fact that the degree of persistence is time varying but observable.

5.4 Alternative models of the countercyclical price of risk

We finally compare our model with two alternative explanations for the countercyclical price of risk. The first is the model with habit formation and heterogeneous preferences proposed by Chan and Kogan (2002). The second is the long-run risk model with stochastic growth volatility proposed by Bansal and Yaron (2004).

The model of Chan and Kogan (2002) (henceforth CK) belongs to a large literature
that studies habit formation.32 CK show that a setting with heterogeneous preferences supports the assumption of Campbell and Cochrane (1999) that the risk aversion of the representative agent is countercyclical. When investors’ risk aversion is heterogeneous, positive shocks transfer wealth from the more risk-averse investors to the less risk-averse investors. Consequently, the aggregate risk aversion becomes countercyclical. The key state variable that drives asset pricing moments in CK is the relative consumption ω_t, defined as the log-aggregate consumption relative to the external standard of living (a low ω_t represents a bad state of the world). The three panels in column (c) of Figure 3 plot asset pricing moments against the relative consumption ω_t. For these plots, we use the calibration from CK.

Another important benchmark is the long-run risk model (Bansal and Yaron, 2004)—an economy with a slow-moving component in aggregate consumption and a representative agent with Epstein and Zin (1989) preferences. Importantly, for a long-run risk model to produce countercyclical asset pricing moments, Bansal and Yaron (2004) rely on exogenous movements in the volatility of aggregate consumption growth, or “fluctuating economic uncertainty.” This feature is introduced in Case II of their model (henceforth BYII). The three panels in column (d) of Figure 3 plot asset pricing moments against the volatility of consumption growth $\sqrt{v_t}$. For these plots, we use the calibration from BYII.

Both the heterogeneous preferences model of CK and the long-run risk model of BYII successfully generate a countercyclical price of risk. Both models have strengths and weaknesses, and a discussion of those is beyond the scope of this paper.33 Here, we focus on the unique theoretical predictions that our model with learning about persistence delivers. As Figure 3 shows, these two alternative models do not generate (with their original calibrations) the U-shaped relationships implied by learning about persistence.

Furthermore, learning about persistence delivers long-horizon return predictability with the price-dividend ratio. While the CK model does generate a negative relationship between the price-dividend ratio and future excess stock returns, the explanatory power of this relationship is smaller than in the data. The BYII model generates return predictability through the persistent variation in the volatility of consumption growth, but the strength of the long-horizon predictability is also weaker than in the data (Beeler and Campbell, 2012). In contrast, the strength of return predictability in our model is the same as in the data. Finally, our model features a novel source of risk that is priced in the equity market, persistence risk. We show that persistence risk predicts future returns, particularly around business cycle peaks and troughs. This unique prediction is validated in the data.

32See Constantinides (1990), Abel (1990), Campbell and Cochrane (1999), Menzly, Santos, and Veronesi (2004), and Santos and Veronesi (2010).

33Refer to Beeler and Campbell (2012), Bansal et al. (2012), and Cochrane (2017). See Xiouros and Zapatero (2010) for a discussion of the CK model.
Figure 3: Comparison with alternative models.

This figure compares the asset pricing implications of five alternative models with the implications of our model with learning about persistence. Column (a) plots the volatility, risk premium, and the Sharpe ratio in a model without incomplete information (Section 5.1) and in a model with learning about the level of expected growth (Section 5.2). Column (b) considers a model with time-varying but observable persistence (Section 5.3). Column (c) plots results for the heterogeneous preferences model of Chan and Kogan (2002) (CK). Column (d) plots results for the stochastic growth volatility for Case II in Bansal and Yaron (2004) (BYII). Unless otherwise specified, we consider the calibration provided in Table 1. For columns (c) and (d), we use the calibrations from CK and BYII, respectively. The variable v_t is the continuous-time equivalent of the discrete-time variable σ_t^2 in BYII.

5.4.1 Term structures of risk

An additional dimension for comparison between our model and CK and BYII is the term structure of risk. Figure 4 depicts the term structures of dividend strip return volatility, the risk premium, and the Sharpe ratio in our model (column a), in the CK model (column b), and in the BYII model (column c).
Figure 4: Term structures of risk.
This figure depicts the term structures of dividend strip return volatility, the risk premium, and the Sharpe ratio in the model of learning about persistence (column a), in the model of Chan and Kogan (2002) (column b), and in Case II of Bansal and Yaron (2004) (column c). For the left plots, we use the calibration provided in Table 1, and we fix $\hat{\lambda}_t = 0$ and $\nu_{\lambda,t} = 0.51$. For the middle and right plots, we use the calibrations from CK and BYII. The variable ω_t is the relative consumption. The variable v_t is the continuous-time equivalent of the discrete-time variable σ^2_t in BYII. The upper and lower bounds for f_t, ω_t, and v_t correspond to the 97.5 and 2.5 percentiles of their distributions.

The model of learning about persistence yields term structures of volatility and the risk premium that are flatter than those obtained in CK and BYII. This is because the state variables in the model of learning about persistence are significantly less persistent than those in CK and BYII. van Binsbergen, Brandt, and Koijen (2012) show that the strong persistence of the state variables in the long-run risk and habit formation models yields

34The relative consumption in CK has a half-life of approximately 12 years. The expected growth and variance of growth in BYII have half-lives of approximately 3 years and 4.5 years. In our model, the expected growth and the mean-reversion speed have half-lives of approximately 6 months and 2.5 years.
markedly upward-sloping term structures of dividend strip return volatility and the risk premium. For the Sharpe ratio, the CK model generates a flat term structure (with a single source of risk, the risk premium is a linear function of volatility), whereas the model of learning about persistence and the BYII model yield increasing term structures.

While the model of learning about persistence yields flatter term structures, we admit that it is unable to generate the downward-sloping term structures documented by van Binsbergen et al. (2012) and van Binsbergen, Hueskes, Koijen, and Vrugt (2013). Theoretical foundations for downward-sloping term structures of risk include financial leverage, bounded rationality and limited information, post-disaster recoveries, and labor relations.\footnote{See Belo, Collin-Dufresne, and Goldstein (2015), Croce et al. (2015), Hasler and Marfè (2016), and Marfè (2017), and refer to van Binsbergen and Koijen (2017) for a recent survey on this topic.}

6 Conclusion

We propose a novel view of fluctuations in the price of risk. We build a theoretical model in which the degree of persistence of expected economic growth is unknown. Rational learning generates a countercyclical price of risk: investors fear stocks during recessions because a decline in expected growth signals stronger persistence.

Investors’ learning creates \textit{persistence risk}, which amplifies asset price fluctuations in bad times but dampens them in good times. In equilibrium, this asymmetry implies an increasing relationship between persistence risk and asset pricing moments. The model predicts time variation in asset pricing moments despite constant conditional moments for consumption and dividend growth. Without uncertainty about persistence, this time variation disappears. Other types of learning studied in the literature (e.g., learning about the level of expected growth) do not generate such countercyclical variation.

We estimate the model with U.S. output data and show that it generates empirically relevant asset pricing patterns. The data provide support for the increasing relationships between persistence risk and asset pricing moments. The data also show that asset pricing moments further increase around business cycle peaks and troughs, as the model predicts. In the model, as in the data, persistence risk predicts future excess returns but only around business cycle peaks and troughs, when uncertainty about persistence matters most.

Our framework offers several directions for future research. It can be used, for instance, to analyze the impact of macroeconomic announcements. These announcements reveal information about the future path of economic growth—including its persistence—prompting investors to demand a higher risk premium during announcement days (Savor and Wilson, 2013). Our framework can also be used to study information acquisition (e.g., investors’
choice on which dimension to focus—level or persistence). Finally, the effects of learning about persistence on the cross-section of asset returns, as well as the effects of investors’ disagreement about persistence, are promising questions to be addressed in future research.
References

A Appendix: Learning

This appendix presents a proof of Proposition 1. We use the following standard result:

Theorem 1. (Liptser and Shiryaev, 2001) Consider an unobservable process u_t and an observable process s_t with dynamics given by

$$
d u_t = [a_0(t, s_t) + a_1(t, s_t)u_t] dt + b_1(t, s_t) dZ^u_t + b_2(t, s_t) dZ^s_t, \tag{A.1}
$$
$$
ds_t = [A_0(t, s_t) + A_1(t, s_t)u_t] dt + B_1(t, s_t) dZ^u_t + B_2(t, s_t) dZ^s_t. \tag{A.2}
$$

All the parameters can be functions of time and of the observable process. The filter and the Bayesian uncertainty evolve according to (we drop the dependence of coefficients on t and s_t for notational convenience):

$$
d \hat{u}_t = (a_0 + a_1 \hat{u}_t) dt + [(b \circ B) + \nu_t A^\top_1] (B \circ B)^{-1} [ds_t - (A_0 + A_1 \hat{u}_t) dt] \tag{A.3}
$$
$$
\frac{d\nu_t}{dt} = a_1 \nu_t + \nu_t a^\top_1 + (b \circ b) - [(b \circ B) + \nu_t A^\top_1] (B \circ B)^{-1} [(b \circ B) + \nu_t A^\top_1]^\top, \tag{A.4}
$$

where

$$
b \circ b = b_1 b^\top_1 + b_2 b^\top_2, \tag{A.5}
$$
$$
B \circ B = B_1 B^\top_1 + B_2 B^\top_2, \tag{A.6}
$$
$$
b \circ B = b_1 B^\top_1 + b_2 B^\top_2. \tag{A.7}
$$

Write the dynamics of the observable variables:

$$
\begin{bmatrix}
 d \ln \delta_t \\
 df_t \\
 dg_t
\end{bmatrix} = \begin{bmatrix}
 f_t - \frac{1}{2} \sigma^2_\delta \\
 \theta(\bar{f} - f_t) \\
 \kappa_g (\bar{g} - g_t)
\end{bmatrix} A_0 dt + \begin{bmatrix}
 0 \\
 0 \\
 0
\end{bmatrix} A_1 dt + \begin{bmatrix}
 \sigma_\delta & 0 & 0 \\
 0 & \sigma_f & 0 \\
 0 & \sigma_g & \sigma_g \sqrt{1 - \rho^2}
\end{bmatrix} \begin{bmatrix}
 dW^\delta_t \\
 dW^f_t \\
 dW^g_t
\end{bmatrix}. \tag{A.8}
$$

The unobservable variable λ_t follows:

$$
d \lambda_t = \begin{bmatrix}
 0 \\
 a_0 \\
 a_1
\end{bmatrix} dt + \begin{bmatrix}
 \sigma_\lambda & 0 & 0 \\
 0 & \sigma_f & 0 \\
 0 & \sigma_g & \sigma_g \sqrt{1 - \rho^2}
\end{bmatrix} \begin{bmatrix}
 dW^\delta_t \\
 dW^f_t \\
 dW^g_t
\end{bmatrix}. \tag{A.9}
$$

An application of Eq. (A.4) yields the dynamics of the posterior uncertainty:

$$
\frac{d\nu_{\lambda, t}}{dt} = \sigma^2_\lambda - 2\kappa \nu_{\lambda, t} - \frac{(\bar{f} - f_t)^2 \nu^2_{\lambda, t}}{\sigma_f^2 (1 - \rho^2)}. \tag{A.10}
$$

The uncertainty $\nu_{\lambda, t}$ does not admit a constant steady-state solution because of the stochastic term $(\bar{f} - f_t)$ in its dynamics. To obtain the dynamics of the filter, compute first

$$
\begin{bmatrix}
 d \ln \delta_t \\
 df_t \\
 dg_t
\end{bmatrix} - (A_0 + A_1 \hat{\lambda}_t) dt = \begin{bmatrix}
 \sigma_\delta dW^\delta_t \\
 (\lambda_t - \hat{\lambda}_t)(\bar{f} - f_t) dt + \sigma_f dW^f_t \\
 \sigma_g \rho dW^f_t + \sigma_g \sqrt{1 - \rho^2} dW^g_t
\end{bmatrix}, \tag{A.11}
$$

43
then define $\hat{d}W^f_t$ and $\hat{d}W^g_t$ as independent Brownian motions:

\[
\hat{d}W^f_t \equiv dW^f_t + \frac{(\lambda_t - \hat{\lambda}_t)(\bar{f} - f_t)}{\sigma_f} dt
\]

\[
\hat{d}W^g_t \equiv dW^g_t - \frac{\rho}{\sqrt{1 - \rho^2}} \frac{(\lambda_t - \hat{\lambda}_t)(\bar{f} - f_t)}{\sigma_f} dt.
\]

(A.12)

(A.13)

Replace this in (A.11) to obtain

\[
\begin{bmatrix}
\frac{d}{dt} \delta_t \\
\frac{df_t}{dt} \\
\frac{dg_t}{dt} \\
\frac{d\hat{\lambda}_t}{dt}
\end{bmatrix}
- (A_0 + A_1 \hat{\lambda}_t) dt =
\begin{bmatrix}
\sigma_\delta dW^\delta_t \\
\sigma_f d\hat{W}^f_t \\
\sigma_g d\hat{W}^g_t + \sigma_g \sqrt{1 - \rho^2} d\hat{W}^g_t
\end{bmatrix},
\]

(A.14)

which can be further replaced in Eq. (A.3) to obtain the dynamics of the filter:

\[
d\hat{\lambda}_t = -\kappa \hat{\lambda}_t dt + \frac{(\bar{f} - f_t)\nu_{\lambda,t}}{\sigma_f} d\hat{W}^f_t - \frac{\rho}{\sqrt{1 - \rho^2}} \frac{(\bar{f} - f_t)\nu_{\lambda,t}}{\sigma_f} d\hat{W}^g_t.
\]

(A.15)

B Appendix: Equilibrium

The dynamics of the vector of state variables are

\[
\begin{bmatrix}
\frac{d\delta_t}{dt} \\
\frac{df_t}{dt} \\
\frac{dg_t}{dt} \\
\frac{d\lambda_t}{dt} \\
\frac{d\nu_{\lambda,t}}{dt}
\end{bmatrix}
= \begin{bmatrix}
\delta_t \frac{df_t}{dt} \\
(\bar{\theta} + \hat{\lambda}_t)(\bar{f} - f_t) \\
\kappa_g (g - g_t) \\
-\kappa \hat{\lambda}_t \\
\sigma_\lambda^2 - 2\kappa \nu_{\lambda,t} - \frac{(f_t - f_t)^2}{\sigma_f^2 (1 - \rho^2)} \\
\end{bmatrix} dt + \begin{bmatrix}
\delta_t \sigma_\delta & 0 & 0 & 0 \\
0 & \sigma_f & 0 & 0 \\
0 & \sigma_g \rho & \sigma_f & 0 \\
0 & 0 & \sigma_g \sqrt{1 - \rho^2} & \sigma_f \\
0 & 0 & \rho (f_t - f_t) \nu_{\lambda,t} & \sigma_f
\end{bmatrix}
\begin{bmatrix}
\frac{dW^\delta_t}{dt} \\
\frac{dW^f_t}{dt} \\
\frac{dW^g_t}{dt}
\end{bmatrix}.
\]

(B.1)

Proof that $I(x_t)$ is the wealth-consumption ratio. The following relationship results directly from replacing the conjectured form of the value function J in the aggregator $h(C, J)$ defined in Eq. (2):

\[
\frac{h(C, J)}{J} = \frac{\phi}{I(x_t)} - \beta \phi.
\]

(B.2)

Define

\[
W_t = C_t I(x_t),
\]

and replace (20) in the product $\xi_t W_t$ to obtain

\[
\xi_t W_t = (1 - \gamma) \exp \left[\int_0^t \left(\frac{\phi - 1}{I(x_s)} - \beta \phi \right) ds \right] C_t^{1-\gamma} I(x_t)^\phi
\]

\[
= (1 - \gamma) \exp \left[\int_0^t \left(\frac{\phi - 1}{I(x_s)} - \beta \phi \right) ds \right] J.
\]

(B.4)

(B.5)
This is a function of J and of time. Applying Itô’s lemma yields:

$$d(\xi_t W_t) = (1 - \gamma) \exp \left[\int_0^t \left(\frac{\phi - 1}{I(x_s)} - \beta \phi \right) ds \right] \left[dJ - J \left(\beta \phi - \frac{\phi - 1}{I(x_t)} \right) dt \right].$$ \hfill (B.6)

We also know that

$$dJ = -h(C, J) dt + dM_t \hfill (B.7)$$

and

$$dJ = J \left(\beta \phi - \frac{\phi}{I(x_t)} \right) dt + dM_t \hfill (B.8)$$

where M_t is a martingale. The second equality follows from (B.2). Replace this in (B.6):

$$d(\xi_t W_t) = (1 - \gamma) \exp \left[\int_0^t \left(\frac{\phi - 1}{I(x_s)} - \beta \phi \right) ds \right] \left[J \left(\beta \phi - \frac{\phi}{I(x_t)} \right) dt + dM_t - J \left(\beta \phi - \frac{\phi - 1}{I(x_t)} \right) dt \right] \hfill (B.9)$$

$$= -(1 - \gamma) \exp \left[\int_0^t \left(\frac{\phi - 1}{I(x_s)} - \beta \phi \right) ds \right] \frac{J}{I(x_t)} dt + d\tilde{M}_t \hfill (B.10)$$

where $d\tilde{M}_t$ is a martingale. The third equality follows from replacing the conjectured form of the value function. The last equation can be integrated on $[t, \infty)$. Then, taking the expectation and assuming that the transversality condition holds yields the total wealth (claim to future output):

$$W_t = \mathbb{E}_t \left[\int_t^\infty \xi_s C_s ds \right] \hfill (B.12)$$

which proves that $I(x_t)$ is indeed the wealth-consumption ratio.

Partial differential equation for the wealth-consumption ratio. Define the log wealth-consumption ratio:

$$i \equiv \log I. \hfill (B.13)$$

Substituting the guess (16) into the Hamilton-Jacobi-Bellman (HJB) Eq. (15) and imposing the market clearing condition, $C = \delta$, yields the following PDE for the log wealth consumption ratio:

$$0 = \gamma - 1 \phi \left[-f + \frac{1}{2} \gamma \sigma_3^2 \right] - \beta + e^{-i}$$

$$+ (\hat{\theta} + \hat{\lambda})(\hat{f} - f) i_f f - \kappa \hat{\lambda} i_L + \left[\sigma_\lambda^2 - 2\kappa \nu \lambda - \frac{(\hat{f} - f)^2 \nu \lambda^2}{\sigma_f^2 (1 - \rho^2)} \right] i_{\nu \lambda}$$

$$+ \frac{\sigma_f^2}{2} i_{ff} + \frac{(\hat{f} - f)^2 \nu \lambda^2}{2 \sigma_f^2 (1 - \rho^2)} i_{\lambda \lambda} + \nu \lambda (\hat{f} - f) i_{ff}$$

$$+ \phi \frac{\sigma_f^2}{2} i_f^2 + \phi (\hat{f} - f) \nu \lambda i_f i_L + \phi \frac{(\hat{f} - f)^2 \nu \lambda^2}{2 \sigma_f^2 (1 - \rho^2)} i_{\lambda \lambda}^2. \hfill (B.14)$$
\section{B.1 Levered equity}

Define

\[P_t = D_t \Pi(x_t) = e^{-\beta dt} C_t^{\eta} \Pi(x_t). \] \hfill (B.15)

Compute

\[\xi_t P_t = (1 - \gamma) \exp \left(\int_0^t \left(\frac{\phi - 1}{I(x_s)} - \beta \phi \right) ds - \beta dt \right) J C_t^{\eta-1} \frac{\Pi(x_t)}{I(x_t)}. \] \hfill (B.16)

One can clearly see that if \(\eta = 1 \) and \(\beta_d = 0 \), then \(C_t^{\eta-1} \) drops out and the last fraction equals one, which brings us back to (B.5). The case of interest is \(\eta > 1 \). Define

\[K(C_t, x_t) = C_t^{\eta-1} \frac{\Pi(x_t)}{I(x_t)} \] \hfill (B.17)

and thus,

\[d(\xi_t P_t) = \Delta(t) \left[-K J \left(\frac{1}{I(x_t)} + \beta_d \right) dt + KdM_t + JdK + (dJ)(dK) \right], \] \hfill (B.18)

with \(dM_t \) being the same martingale as in (B.8). We know that if \(P_t \) is the stock price, then we should also have:

\[d(\xi_t P_t) = -\xi_t e^{-\beta dt} C_t^{\eta} dt + d\widehat{M}_t, \] \hfill (B.19)

where \(d\widehat{M}_t \) is a martingale. This means that the drifts in (B.18) and (B.19) have to be equal. This yields a partial differential equation (PDE) to be solved by \(\Pi(x_t) \). Replacing \(j(x_t) \equiv \ln \Pi(x_t) \) results in the following PDE:

\[0 = e^{-j - \beta - \beta_d} + \left(\frac{\eta - 1}{\psi} \right) f + \frac{\sigma_d^2}{2} \left[\frac{\gamma(\gamma - 1)}{\phi} + (\eta - 1)(\eta - 2\gamma) \right] \]
\[+ \frac{1 - \phi}{2} \left(\sigma_d^2 i_j^2 f^2 + 2(f - f)\nu_\lambda i_f^2 i_\lambda + \left(\frac{\lambda - \lambda}{\phi} \right)^2 \right) \]
\[+ \left[(\theta + \lambda)(f - f) - (1 - \phi)\sigma_d^2 i_f + (f - f)\nu_\lambda i_\lambda \right] j_f \]
\[= \left[(\theta + \lambda)(f - f) - (1 - \phi)\sigma_d^2 i_f + (f - f)\nu_\lambda i_\lambda \right] j_f \]
\[+ \left[\frac{\lambda}{\kappa}(1 - \phi) \right] \left(\frac{f - f}{\sigma_d^2 (1 - \rho^2)} \right)^2 i_f \]
\[+ \left[\frac{\lambda}{\kappa}(1 - \phi) \right] \left(\frac{f - f}{\sigma_d^2 (1 - \rho^2)} \right)^2 i_\lambda \]
\[+ \left[\frac{\lambda}{\kappa}(1 - \phi) \right] \left(\frac{f - f}{\sigma_d^2 (1 - \rho^2)} \right)^2 i_\lambda \]
\[+ \left[\frac{\lambda}{\kappa}(1 - \phi) \right] \frac{f - f}{\sigma_d^2 (1 - \rho^2)} j_f \]
\[+ \nu_\lambda(f - f) j_f + \sigma_d^2 j_f^2 + \left(\frac{f - f}{\sigma_d^2 (1 - \rho^2)} \right)^2 j_f^2 + \nu_\lambda(f - f) j_f j_\lambda. \]

This equation has a similar structure to (B.14), except that it also involves the log wealth-consumption ratio \(i \). It is a matter of algebra to verify that replacing \(\eta = 1 \) and \(\beta_d = 0 \) in (B.20) gives exactly (B.14).

The PDE for \(i(f, \widehat{\lambda}, \nu_\lambda) \) is solved numerically using the Chebyshev collocation method (Judd,
1998). That is, we approximate the function \(i(f, \tilde{\lambda}, \nu_\lambda) \) as follows:

\[
i(f, \tilde{\lambda}, \nu_\lambda) \approx P(f, \tilde{\lambda}, \nu_\lambda) = \sum_{i=0}^{I} \sum_{k=0}^{K} \sum_{l=0}^{L} a_{i,k,l} T_i[f] \times T_k[\tilde{\lambda}] \times T_l[\nu_\lambda],
\]

where \(T_m[\cdot] \) is the Chebyshev polynomial of order \(m \). The interpolation nodes are obtained by meshing the scaled roots of the Chebyshev polynomials of order \(I+1, K+1, \) and \(L+1 \). We scale the roots of the Chebyshev polynomials of order \(I+1, K+1, \) and \(L+1 \) such that they cover approximately 95% of the unconditional distributions of the 3 state variables.

The polynomial \(P(f, \tilde{\lambda}, \nu_\lambda) \) and its partial derivatives are then substituted into the PDE, and the resulting expression is evaluated at the interpolation nodes. This yields a system of \((I+1) \times (K+1) \times (L+1)\) equations with \((I+1) \times (K+1) \times (L+1)\) unknowns (the coefficients \(a_{i,k,l} \)). This system of equations is solved numerically.

Once we solve for the wealth-consumption ratio \(i \), we replace it in Eq (B.20); then, we solve for the price-dividend ratio using the same procedure.

We generate a grid of \(11^3 \) points. The mean squared PDE residuals over the set of 1,331 interpolation nodes is of order \(10^{-8} \). That is, the Chebyshev collocation method yields an accurate solution to the PDE.

B.2 Evaluation of the partial derivatives \(I \) and \(\Pi \)

In this appendix, we discuss the two inequalities in Eq. (17), which we restate here for convenience:

\[
I_f > 0, \quad I_{\tilde{\lambda}} > 0. \tag{B.21}
\]

These inequalities follow directly from the guess of the value function in (16). Taking the derivative of \(J \) with respect to any of the two state variables \(f \) and \(\lambda \) yields

\[
J_{(\cdot)} = \phi J I_{(\cdot)} T, \tag{B.22}
\]

with the product \(\phi J \) being positive when \(\gamma > 1 > 1/\psi \).

Due to non-satiation, expected lifetime utility must rise as investment opportunities improve, and thus, \(J_f > 0 \). Using (B.22), this reasoning yields \(I_f > 0 \). Turning to the inequality \(I_{\tilde{\lambda}} > 0 \), assuming that the agent prefers early resolution of uncertainty, we expect that she prefers less persistence (i.e., a higher mean-reversion speed), which yields \(J_{\tilde{\lambda}} > 0 \) and \(I_{\tilde{\lambda}} > 0 \).

We verify numerically that the sign of \(I_{\tilde{\lambda}}/I \) is indeed positive with our calibration. We tabulate in the upper part of Table A1 values of \(I_{\tilde{\lambda}}/I \) for a two-dimensional grid on the state variables \(f_t \) and \(\tilde{\lambda}_t \). The results indicate that \(I_{\tilde{\lambda}}/I \) tends to increase in bad times (i.e., a lower \(f_t \)) and when the persistence is stronger (i.e., a lower \(\tilde{\lambda}_t \)). The fact that \(I_{\tilde{\lambda}}/I \) becomes smaller in good times is related to the following effect: positive shocks in good times signal not only higher persistence (which is bad news for the agent) but also a longer economic boom (which is good news). However, because the term \(I_{\tilde{\lambda}}/I \) remains positive in good times, the second effect appears to be small.

The lower part of Table A1 tabulates values for the price-dividend ratio \(\Pi \). We find coefficients \(\Pi_{\tilde{\lambda}}/\Pi \) that are an order of magnitude higher than \(I_{\tilde{\lambda}}/I \). The coefficients are positive at all times and increase in bad times and when the persistence is stronger.
Table A1: Values of the coefficients I_{λ}/I (above) and Π_{λ}/Π (below)

The tables report numerical evaluations of I_{λ}/I and Π_{λ}/Π. For both panels, we fix $\nu_{\lambda,t} = 0.51$ and build a grid for f_t and $\hat{\lambda}_t$. Unless otherwise specified, we consider the calibration provided in Table 1.

B.3 Price-dividend ratio and risk-free rate

This appendix provides additional results for Section 3.2. Figure A1 plots the log price-dividend ratio and the equilibrium risk-free rate. The log price-dividend ratio increases with the output growth forecast f_t (left panel). The relationship is almost linear, implying that Π_{f}/Π is positive and close to being a constant.

After replacing (18)–(19) in (22), the risk-free rate becomes:

$$
\begin{align*}
 r_{f,t} &= \beta + \frac{f_t}{\psi} - \frac{\gamma + \gamma \psi}{2 \psi} \sigma^2 \\
 &\quad - (1 - \phi) \left[\frac{\sigma^2}{2} \left(\frac{I_f}{I} \right)^2 + \frac{I_f I_{\lambda} (\bar{f} - f_t) \nu_{\lambda,t} + \frac{1}{2 \sigma_f^2 (1 - \rho^2)} \left(\frac{I_{\lambda}}{I} \right)^2 (\bar{f} - f_t)^2 \nu_{\lambda,t}^2 \right]
\end{align*}
$$

The right panel of Figure A1 depicts the equilibrium risk-free rate, which increases with the growth forecast f_t. Uncertainty about persistence decreases the risk-free rate, but its impact is weak.
Figure A1: Behavior of the price-dividend ratio and risk-free rate with learning about persistence.
This figure shows how the price-dividend ratio and the equilibrium risk-free rate vary with the forecast f_t. For the two plots, we fix $\hat{\lambda}_t = 0$. Unless otherwise specified, we consider the calibration provided in Table 1.

C Appendix: Estimation

To fit our continuous-time model to the data, we first discretize the filtered dynamics in (B.1) using the following approximations

$$\log \left(\delta_{t+\Delta}/\delta_t \right) = \left(f_t - \frac{1}{2} \sigma_\delta^2 \right) \Delta + \sigma_\delta \sqrt{\Delta} v_{1,t+\Delta}, \quad (C.1)$$

$$f_{t+\Delta} = e^{-\bar{\theta}_t \Delta} f_t + \left(1 - e^{-\bar{\theta}_t \Delta} \right) \bar{f} + \sigma_f \sqrt{1 - e^{-2\bar{\theta}_t \Delta}} v_{2,t+\Delta}, \quad (C.2)$$

$$g_{t+\Delta} = e^{-\kappa_g \Delta} g_t + \left(1 - e^{-\kappa_g \Delta} \right) \bar{g} + \sigma_g \sqrt{1 - e^{-2\kappa_g \Delta}} \left(\rho v_{2,t+\Delta} + \sqrt{1 - \rho^2} v_{3,t+\Delta} \right), \quad (C.3)$$

$$\hat{\lambda}_{t+\Delta} = e^{-\kappa \Delta} \hat{\lambda}_t + \frac{(\overline{f} - f_t) \nu_{\lambda,t}}{\sigma_f} \sqrt{\frac{1 - e^{-2\kappa \Delta}}{2\kappa}} \left(v_{2,t+\Delta} - \frac{\rho}{\sqrt{1 - \rho^2}} v_{3,t+\Delta} \right), \quad (C.4)$$

$$\nu_{\lambda,t+\Delta} = \nu_{\lambda,t} + \left[\sigma_\lambda^2 - 2\kappa \nu_{\lambda,t} - \left(\frac{(\overline{f} - f_t) \nu_{\lambda,t}}{\sigma_f} \sqrt{1 - \rho^2} \right)^2 \right] \Delta, \quad (C.5)$$

where $\bar{\theta}_t = \bar{\theta} + \hat{\lambda}_t$ and $v_{1,t}, v_{2,t}, v_{3,t}$ are independent normally distributed random variables with mean 0 and variance 1. The time interval is $\Delta = 1/4$. We use the realized real GDP growth as a proxy for the output growth $\log(\delta_{t+\Delta}/\delta_t)$, the mean analyst forecast for the 1-quarter-ahead real GDP growth as a proxy for the expected growth rate f_t, and the difference between the 75th and 25th percentiles of analysts’ forecasts—the analysts’ forecast dispersion—on the 1-quarter-ahead real GDP growth rate as a proxy for the disagreement g_t. The system above shows that, conditional on knowing the parameters of the model and the prior values $(\hat{\lambda}_0, \nu_{\lambda,0})$, the time series
of the realized GDP growth, GDP growth forecast, and GDP growth forecast dispersion allow us to sequentially back out the time series of the posterior values \((\hat{\lambda}_t, \nu_{\lambda,t})\) and the noises \((v_{1,t}, v_{2,t}, v_{3,t})\) for \(t = \Delta, 2\Delta, 3\Delta \ldots\). For the initial values, we set \(\hat{\lambda}_0\) to zero, which corresponds to the long-term mean, while \(\nu_{\lambda,0}\) is set to the positive root of the polynomial obtained when \(\frac{d\nu_{\lambda,t}}{dt} = 0\), which defines a local steady state.

The objective is to maximize the log-likelihood function \(L(\cdot, \cdot)\)

\[
L(\Theta; u_\Delta, \ldots, u_{N\Delta}) = \sum_{i=1}^{N} \log \left(\frac{1}{(2\pi)^{3/2} \sqrt{\left| \Sigma(i-1)\Delta \right|}} \right) - \frac{1}{2} u_t^\top \Sigma^{-1}(i-1)\Delta u_t, \tag{C.6}
\]

where \(\Theta \equiv (\sigma_\delta, \tilde{f}, \sigma_f, \sigma_{\lambda}, \bar{\bar{g}}, \bar{\bar{g}}, \bar{g}, \bar{\bar{g}}, \kappa, \rho, \sigma_g, \bar{\bar{g}}, \bar{\bar{g}}, \kappa_g)^\top\), \(N\) is the number of observations, \(\top\) is the transpose operator, and \(|.|\) is the determinant operator. The 3-dimensional vector \(u\) satisfies

\[
\begin{bmatrix}
 u_{1,t+\Delta} \\
 u_{2,t+\Delta} \\
 u_{3,t+\Delta}
\end{bmatrix} =
\begin{bmatrix}
 \log (\delta_{t+\Delta}/\delta_t) - \left(f_t - \frac{1}{2}\sigma_f^2 \right) \Delta \\
 f_{t+\Delta} - e^{-\theta_{t}\Delta} f_t - (1 - e^{-\theta_{t}\Delta}) \tilde{f} \\
 g_{t+\Delta} - e^{-\kappa_{g}\Delta} g_t - (1 - e^{-\kappa_{g}\Delta}) \bar{\bar{g}}
\end{bmatrix}. \tag{C.7}
\]

Therefore, the conditional expectation and conditional variance-covariance matrix of \(u_{t+\Delta}\) are

\[
\begin{bmatrix}
 0 \\
 0 \\
 0
\end{bmatrix}, \tag{C.8}
\]

\[
\begin{bmatrix}
 \sigma^2_{\delta}\Delta & 0 & 0 \\
 0 & \sigma_f^2 \frac{1-e^{-2\bar{\bar{g}}\Delta}}{2\bar{\bar{g}}} & \sigma_g \sqrt{\frac{1-e^{-2\bar{\bar{g}}\Delta}}{2\bar{\bar{g}}}} \rho \sigma_f \sqrt{\frac{1-e^{-2\bar{\bar{g}}\Delta}}{2\bar{\bar{g}}}} \\
 0 & \sigma_g \sqrt{\frac{1-e^{-2\bar{\bar{g}}\Delta}}{2\bar{\bar{g}}}} \rho \sigma_f \sqrt{\frac{1-e^{-2\bar{\bar{g}}\Delta}}{2\bar{\bar{g}}}} & \sigma_g^2 \frac{1-e^{-2\bar{\bar{g}}\Delta}}{2\bar{\bar{g}}}
\end{bmatrix}. \tag{C.9}
\]

C.1 Descriptive statistics of the state variables

Table A2 reports statistics describing the level, time-variation, and range of the state variables. The growth rate forecast \(f_t\) is 2.6% on average and fluctuates mostly between −1% to 6%. The demeaned mean-reversion speed \(\bar{\bar{g}}_t\) varies strongly over time, fluctuating mostly between −0.68 and 0.66. Finally, uncertainty about the mean-reversion speed \(\nu_{\lambda,t}\) also varies substantially, fluctuating mostly between 0.20 and 0.97. Overall, these results suggest that persistence clearly fluctuates over time and that there is a relatively high level of uncertainty about it, on average.

D Appendix: Data description

Real GDP growth rate and forecast data We proxy the output process with the realized Gross Domestic Product (GDP). We compute the log growth rate of the real quarterly GDP over the period 1968Q4–2016Q4. We consider the mean real GDP growth forecast for the next quarter from the Survey of Professional Forecasters as a measure of expected real GDP growth. We use the cross-sectional dispersion (75th percentile minus 25th percentile) of the real GDP growth forecast for the next quarter from the Survey of Professional Forecasters as a measure of disagreement. The first forecast observation consists of the expected real GDP growth rate for 1969Q1, as released in
Table A2: Descriptive statistics of the state variables.
This table reports the descriptive statistics of the state variables in the economy: the output growth \(\log \left(\frac{\delta_{t+1/4}}{\delta_t} \right) \), the forecast \(f_t \), the filtered demeaned mean-reversion speed \(\hat{\lambda}_t \), and the uncertainty about the mean-reversion speed \(\nu_{\lambda,t} \).

<table>
<thead>
<tr>
<th>(\log \left(\frac{\delta_{t+1/4}}{\delta_t} \right))</th>
<th>Mean</th>
<th>Standard deviation</th>
<th>5-percentile</th>
<th>95-percentile</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f_t)</td>
<td>0.0269</td>
<td>0.0162</td>
<td>-0.0330</td>
<td>0.0777</td>
</tr>
<tr>
<td>(\hat{\lambda}_t)</td>
<td>0.0256</td>
<td>0.0166</td>
<td>-0.0098</td>
<td>0.0553</td>
</tr>
<tr>
<td>(\nu_{\lambda,t})</td>
<td>0.0055</td>
<td>0.4109</td>
<td>-0.6810</td>
<td>0.6608</td>
</tr>
<tr>
<td>(\nu_{\lambda,t})</td>
<td>0.7396</td>
<td>0.1962</td>
<td>0.4048</td>
<td>0.9669</td>
</tr>
</tbody>
</table>

1968Q4. The reported growth forecasts are annualized.

Realized and forecasted GDP data are seasonally adjusted. Real GDP growth and forecast data are obtained from the Federal Reserve Bank of Philadelphia. These series can be retrieved using the following link:

Real risk-free rate We compute the real risk-free rate as the three-month nominal yield adjusted by the expected inflation rate over the next three months. As in Beeler and Campbell (2012), we first take the nominal yield on a three-month Treasury bill \(y_{3,t} \) in month \(t \) and subtract the three-month inflation \(\pi_{t,t+3} \) from period \(t \) to \(t+3 \) to form a measure of the ex post real three-month interest rate. This is the dependent variable in the predictive regression below:

\[
y_{3,t} - \pi_{t,t+3} = \beta_0 + \beta_1 y_{3,t} + \beta_2 \pi_{t-12,t} + \epsilon_{t+3} \tag{D.1}
\]

where the independent variables are the inflation over the previous year \(\pi_{t-12,t} \) divided by four and the three-month nominal yield \(y_{3,t} \). The predicted value for the regression in month \(t \) gives the ex ante risk-free rate for month \(t+1 \). Our quarterly measure of the real risk-free rate is the annualized value at the beginning of the quarter, which we denote by \(r_{f,t} \).

The nominal yield is the three-month Treasury Bill secondary market rate, which we continuously compound as follows: \(y_{3,t} = \ln \left(1 + \frac{y_{3,t,\text{obs}}}{100} \right) / 4 \). Inflation is computed as the monthly log growth rate of the Consumer Price Index (CPI) from the Bureau of Labor Statistics, which is seasonally adjusted. Both series are at the monthly frequency. The data can be retrieved from the Federal Reserve Bank of St. Louis, using the following links:

- Three-month Treasury Bill rate: https://fred.stlouisfed.org/series/TB3MS
- Consumer Price Index: https://fred.stlouisfed.org/series/CPIAUCSL

Stock prices and dividends We compute the stock market price index and extract the dividends using CRSP data. The stock price index in month \(t \) is constructed as:

\[
P_t = P_{t-1} (1 + R_{\text{noD},t}) \tag{D.2}
\]

where \(R_{\text{noD},t} \) denotes the return of a value-weighted index excluding distributions in month \(t \).
The monthly dividend is given by

\[D_t = P_t \left(\frac{1 + R_{D,t}}{1 + R_{\text{noD},t}} - 1 \right) \]

(D.3)

where \(R_{D,t} \) denotes the return of a value-weighted index including distributions in month \(t \).

The quarterly dividend is the sum of dividends within a quarter, which are not seasonally adjusted. We then calculate the log quarter-over-quarter growth rate of dividends. Dividend growth is converted from nominal to real terms using the CPI. We thus subtract log inflation to form real growth rates.

The price-dividend ratio is the price in the last month of the quarter divided by the sum of dividends paid in the last twelve months. We use the series of the value-weighted index including distributions (VWRETD) and the value-weighted index excluding distributions (VWRETX) from CRSP, which cover NYSE, Amex, and Nasdaq data.

Stock return volatility Stock return volatility is the volatility of real stock returns computed at the quarterly frequency. We first fit an AR(1) process on the quarterly log return of the stock price index and take the residuals. We then obtain the conditional volatility estimate, denoted by \(\text{Vol}_{R,t} \), with the exponential GARCH(1,1) of (Nelson, 1991). We finally annualize the series. We use the quarterly value-weighted market price index including distributions from CRSP.

Realized and expected excess stock returns We first compute the quarterly real excess stock returns by subtracting the real risk-free rate from real returns. The real return is the log return of the market price index deflated by the CPI, whereas the real risk-free rate is constructed as in Section D. The realized real excess stock return \(R_{X,t} \) in quarter \(t \) is thus given by:

\[R_{X,t} = \ln (1 + R_{D,t}) - \pi_{t-1,t} - r_{f,t} \]

(D.4)

where quarterly inflation \(\pi_{t-1,t} \) is the log growth rate of the CPI in the final month of the current quarter over the final month in the previous quarter. We use the Consumer Price Index from the Bureau of Labor Statistics, which is seasonally adjusted.

To compute the expected excess returns, we regress the returns \(R_{X,t} \) on the lagged dividend yield (measured at time \(t - 1 \)), the lagged default premium (Baa yield minus ten-year government bond yield), and stock return volatility. The estimated expected real excess return in quarter \(t \) is the fitted value at time \(t \), \(\hat{R}_{X,t} \). We then annualize the series. This approach follows Fama and French (1989)’s measurement procedure for estimating expected returns.

The default premium is defined as the Moody’s seasoned Baa corporate bond yield relative to the yield on a 10-year constant-maturity Treasury, as available from the Federal Reserve Bank of St. Louis (https://fred.stlouisfed.org/series/BAA10YM).

The Sharpe ratio is given by the expected real excess stock returns \(\hat{R}_{X,t} \) divided by the volatility of real stock returns \(\text{Vol}_{R,t} \). Both series are at the quarterly frequency.

E Appendix: Additional empirical results

This section reproduces the predictability analysis of the paper (Section 4.4) with a set of control variables. The controls include the price-dividend ratio (Fama and French, 1988), stock market volatility (French et al., 1987), the default premium (Fama and French, 1989), and the macro
uncertainty index (Jurado et al., 2015). Table A3 reproduces Table 8, Table A4 reproduces Table 9, and Table A5 reproduces Table 11.

Panel A: Without controls

<table>
<thead>
<tr>
<th>Excess return</th>
<th>1Y</th>
<th>3Y</th>
<th>5Y</th>
<th>7Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>PR_t</td>
<td>2.273</td>
<td>6.209*</td>
<td>8.305**</td>
<td>10.37***</td>
</tr>
<tr>
<td>t-stat</td>
<td>1.585</td>
<td>1.682</td>
<td>2.381</td>
<td>3.772</td>
</tr>
<tr>
<td>R-squared</td>
<td>0.013</td>
<td>0.044</td>
<td>0.054</td>
<td>0.094</td>
</tr>
<tr>
<td>N</td>
<td>188</td>
<td>180</td>
<td>172</td>
<td>164</td>
</tr>
</tbody>
</table>

Panel B: With controls

<table>
<thead>
<tr>
<th>Excess return</th>
<th>1Y</th>
<th>3Y</th>
<th>5Y</th>
<th>7Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>PR_t</td>
<td>3.881</td>
<td>8.545**</td>
<td>9.497***</td>
<td>11.92***</td>
</tr>
<tr>
<td>t-stat</td>
<td>1.601</td>
<td>2.132</td>
<td>3.572</td>
<td>3.075</td>
</tr>
<tr>
<td>R-squared</td>
<td>0.013</td>
<td>0.044</td>
<td>0.054</td>
<td>0.094</td>
</tr>
<tr>
<td>N</td>
<td>188</td>
<td>180</td>
<td>172</td>
<td>164</td>
</tr>
</tbody>
</table>

Table A3: Predictability of excess returns with persistence risk.

This table shows the predictability of cumulative future excess stock returns with persistence risk, as measured by $PR_t = (\bar{f}_t - f_t)\nu_{\lambda, t}$. Panel A reports the regression estimates in the data (as in panel B of Table 8), while panel B reports the results when controlling for the log price-dividend ratio (Fama and French, 1988), the level of stock market volatility (French et al., 1987), the default premium (Fama and French, 1989), and the macro uncertainty index of Jurado et al. (2015). Each column represents a different forecast horizon K, and N is the number of observations. t-statistics are computed with Newey and West (1987) standard errors with $2(K-1)$ lags. Statistical significance at the 10%, 5%, and 1% levels is denoted by *, **, and ***, respectively. The construction of the empirical moments is discussed in Appendix D. Stock prices represent the value-weighted CRSP index, and the sample spans the period Q1:1969–Q4:2016.
Table A4: Asymmetric excess return predictability with persistence risk (with and without controls).

This table reports the return predictability of persistence risk during high vs. low informative times in the data. Persistence risk is given by $PR_t = (\bar{f} - f_t)\nu_{\lambda,t}$. High informative times correspond to observations when the growth forecast f_t falls into its bottom or top quintiles. Low informative times include the remaining observations. Panel A reports the results without controls (as in panel B of Table 9), and panel B reports the results when controlling for log price-dividend ratio, the level of stock market volatility, the default premium, and the macro uncertainty index of Jurado et al. (2015). Each column represents a different forecast horizon K, and N is the number of observations. t-statistics are computed with Newey and West (1987) standard errors with $2(K - 1)$ lags. Statistical significance at the 10%, 5%, and 1% levels is denoted by *, **, and ***, respectively. The construction of the empirical variables is discussed in Appendix D. Stock prices represent the value-weighted CRSP index, and the sample spans the period Q1:1969–Q4:2016.

<table>
<thead>
<tr>
<th></th>
<th>Excess return</th>
<th></th>
<th>Excess return</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1Y</td>
<td>3Y</td>
<td>5Y</td>
</tr>
<tr>
<td>Panel A: Without controls</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low informative times (f_t close to \bar{f})</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PR_t</td>
<td>-3.634</td>
<td>8.604</td>
<td>-4.365</td>
</tr>
<tr>
<td>t-stat</td>
<td>-0.667</td>
<td>1.490</td>
<td>-0.692</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>High informative times (f_t far from \bar{f})</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PR_t</td>
<td>2.788**</td>
<td>6.005</td>
<td>9.346**</td>
</tr>
<tr>
<td>t-stat</td>
<td>2.018</td>
<td>1.584</td>
<td>2.473</td>
</tr>
<tr>
<td>R-squared</td>
<td>0.022</td>
<td>0.044</td>
<td>0.065</td>
</tr>
<tr>
<td>N</td>
<td>188</td>
<td>180</td>
<td>172</td>
</tr>
</tbody>
</table>
Table A5: Predictability of excess returns with the price-dividend ratio (with and without controls).

This table reports the return predictability of the log price-dividend ratio during high vs. low informative times in the data. High informative times correspond to observations when the growth forecast \(f_t \) falls into its bottom or top quintiles. Low informative times include the remaining observations. Panel A reports the results without controls (as in panel B of Table 11), and panel B reports the results when controlling for the level of stock market volatility, the default premium, and the macro uncertainty index of Jurado et al. (2015). Each column represents a different forecast horizon \(K \), and \(N \) is the number of observations. \(t \)-statistics are computed with Newey and West (1987) standard errors with \(2(K − 1) \) lags. Statistical significance at the 10%, 5%, and 1% levels is denoted by *, **, and *** respectively. The construction of the price-dividend ratio is discussed in Appendix D. Stock prices represent the value-weighted CRSP index, and the sample spans the period Q1:1969–Q4:2016.

<table>
<thead>
<tr>
<th></th>
<th>1Y</th>
<th>3Y</th>
<th>5Y</th>
<th>7Y</th>
<th></th>
<th>1Y</th>
<th>3Y</th>
<th>5Y</th>
<th>7Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low informative times ((f_t) close to (\bar{f}))</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>High informative times ((f_t) far from (\bar{f}))</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Log(P/D)</td>
<td>-0.114</td>
<td>-0.209</td>
<td>-0.324</td>
<td>-0.366</td>
<td>-0.140</td>
<td>-0.249</td>
<td>-0.396</td>
<td>-0.413</td>
<td>-0.412</td>
</tr>
<tr>
<td>R-squared</td>
<td>0.078</td>
<td>0.100</td>
<td>0.182</td>
<td>0.207</td>
<td>0.207</td>
<td>0.205</td>
<td>0.344</td>
<td>0.281</td>
<td></td>
</tr>
<tr>
<td>(N)</td>
<td>188</td>
<td>180</td>
<td>172</td>
<td>164</td>
<td>188</td>
<td>180</td>
<td>172</td>
<td>164</td>
<td></td>
</tr>
</tbody>
</table>

Panel A: Without controls

Excess return

Panel B: With controls

Excess return