Belief Updating and the Demand for Information

Sandro Ambuehl* and Shengwu Li†

July 2, 2014

Abstract
How do individuals value noisy information that guides economic decisions? Using a novel laboratory experiment, we investigate the willingness-to-pay for useful information. We identify two systematic biases in information demand. Compared to the standard rational agent model, individuals over-value low quality information and under-value high quality information. They also disproportionately prefer information that may yield certainty. By eliciting agents’ posterior beliefs, we find that both these biases are well-explained by non-Bayesian belief updating. Furthermore, individuals differ consistently in their responsiveness to information - the extent that their beliefs move upon observing signals. This single trait explains about 80% of the variation in information demand that is attributable to belief updating. It is also predictive of behavior across different choice environments. Thus, we find that the demand for information is driven by belief updating, and that belief updating behavior is a stable individual trait.

JEL classification: C91, D01, D03, D83

Keywords: Demand for information, belief updating, responsiveness to information, experimental economics

*ambuehl@stanford.edu
†shengwu@stanford.edu. Both authors are at Stanford University, Department of Economics, Landau Economics Building, 579 Serra Mall, Stanford, CA, 94305. We are deeply indebted to our advisors B. Douglas Bernheim, Paul Milgrom, Muriel Niederle, Alvin E. Roth, and Charles Sprenger. We are grateful to Itay Fainmesser, Simon Gaechter, Mark Machina, Jeffrey Naecker and participants at the Stanford Behavioral and Experimental Economics Lunch for very helpful comments and discussions. Financial support for this project was provided by the Department of Economics at Stanford University.
Contents

1 Introduction .. 3
 1.1 Related Literature 7

2 Experimental Design 10
 2.1 Setup .. 10
 2.2 Research Questions 12
 2.3 Implementation 15

3 Preliminary Analysis 20

4 Demand for Information 22
 4.1 Is the demand for information driven by belief updating? 25

5 Consistent Individual Heterogeneity 28
 5.1 Are individuals consistent within tasks? 29
 5.2 A structural model of responsiveness to information 30
 5.3 Are individuals consistent across tasks? 32
 5.4 Out-of-sample test: The Gradual Information Task 35

6 Discussion .. 41

7 Concluding Remarks 43

A Correlates of Responsiveness to Information 51

B Robustness Checks 55
 B.1 Analysis on the full sample 55
 B.2 Truncation in the aggregate analysis 60
 B.3 Framing effects and extremeness-avoidance 60
 B.4 Responsiveness and subsets of information structures 63

C Responsiveness to Information Compared to Risk Aversion 63

D Experimental Instructions 66
1 Introduction

Modern economies increasingly trade not just in physical goods, but in information. Economic agents consider whether to purchase medical tests, consulting expertise, or financial forecasts. Entire industries are premised on the sale of useful but noisy information.

However, the demand for useful information is not like the demand for coffee or convertibles; it is not a brute fact arising from inarguable tastes. Rather, the standard rational agent model tightly predicts agents’ demand for information: Agents foresee that they will update prior beliefs according to Bayes’ Law, they foresee what decisions they will make after each possible signal realization, and they evaluate the resulting lottery over outcomes. Hence, agents’ willingness to pay for information will be entirely determined by the properties of the signal, their prior beliefs, and their risk preferences. These predictions have not yet been thoroughly examined. (We will review the literature shortly.)

In this paper, we use a laboratory experiment to systematically investigate the behavioral properties of the demand for information. Our experiment uses modifications of familiar urns-and-balls tasks. In these tasks, subjects receive signals about a payoff-relevant ‘state of the world’ with a known state-contingent signal distribution. This signal distribution is implemented by drawing colored balls from a virtual urn, with a different urn for each state. In our setting, information is stochastic, instrumentally useful\(^1\) and has no intrinsic value\(^2\). Strategic considerations play no role, and by design, concavity of the utility function cannot affect behavior\(^3\).

We use a laboratory experiment because this gives us precise control over prior beliefs and signal distributions, allowing us to identify behavior in ways that are not

\(^1\) As opposed to studies in which the same action will or should be taken regardless the outcome of the informative signal, such as in Bastardi and Shafrir (1998) and Eliaz and Schotter (2010).
\(^2\) As opposed to studies in which subjects arguably derive utility from their beliefs, such as Burks et al. (2013), Eil and Rao (2011), Ertac (2011), and Moebius et al. (2013).
\(^3\) We achieve this by letting subjects earn one of only two possible amounts for participation in the experiment.
possible with field data.

Our experiment first elicits subjects’ willingness-to-pay (WTP) for a set of possible signals, and later elicits subjects’ posterior beliefs conditional on each signal realization. There are thus two ways to assess biases in the demand for information: Subjects may be biased relative to the objective Bayes posteriors, or subjects may be biased relative to their own posterior beliefs.

When we compare subjects’ WTP to the objective Bayesian benchmark, we identify two biases in the demand for information. First, subjects’ willingness-to-pay for low-quality information is too high, and their willingness-to-pay for high-quality information is too low. Second, subjects disproportionately prefer information that may yield certainty about the state of the world. (We also consider the hypothesis that subjects prefer ‘symmetric’ information whose quality does not depend on the state of the world, but do not find evidence for this hypothesis.)

These biases may either arise because of subjects’ non-standard belief updating, or because of non-standard valuations of information even conditional on beliefs. For instance, subjects may desire certainty because they are averse to making choices that have even the possibility of error. By comparing subjects’ elicited WTP to the WTP implied by their own posterior beliefs, we can decompose the biases into a part that is due to biased belief updating, and a remainder. We find that the two

4 This first bias is reminiscent of the system neglect hypothesis in Massey and Wu (2005).
5 This is consistent with results by Andreoni and Sprenger (2012), Andreoni and Sprenger (2013), Gneezy et al. (2006), Keren and Willemsen (2008), Rydval et al. (2009), Simonsohn (2009), who suggest that subjects have a disproportionate preference for certainty in choice from single-stage lotteries.
6 This is contrary to what recent experimental and theoretical literature of decision making under uncertainty suggests. (Ergin and Gul (2009), Halevy (2007), Halevy and Feltkamp (2005), Seo (2009), Yates and Zukowski (1976), Bernasconi and Loomes (1992))
7 There are two other factors which, in principle, may cause these biases. First, agents may fail to correctly foresee what action they will choose after obtaining a particular piece of information. Second, agents may entertain incorrect assessments of the probability of receiving a particular piece of information. In our experiment, subjects exhibit neither of these failures systematically.
8 This exercise, however, does not decompose behavior into beliefs and preferences. In the subjective expected utility framework, preferences are basic, and beliefs are just part of the representation. (Savage (1954)) To be scrupulous, when we say that a subject deviates from Bayesian belief updating, we mean ‘in the representation that rationalizes this choice, the beliefs differ from the objective
previous biases disappear – they are wholly driven by non-standard belief updating. However, we identify a third bias: Conditional on their own posterior beliefs, subjects’ willingness-to-pay for information is too low.

Given the importance of non-standard belief updating in determining the demand for information, we then investigate individual heterogeneity in belief updating. Previous research may suggest that subjects’ belief updating behavior is essentially a noisy version of Bayesian updating – apart from some aggregate tendencies such as conservatism (Peterson and Beach (1967)) or base-rate neglect (Kahneman and Tversky (1974)).

By contrast, we identify a new dimension of systematic variation. Subjects’ responsiveness to information – the extent that beliefs move upon observing signals – is a stable and predictive individual trait: A subject who, in some cases, updates beliefs too conservatively (or not conservatively enough) tends to do so in all cases, and by comparable amounts. This trait is orthogonal to measures of mathematical aptitude, such as college major and self-reported knowledge of Bayes’ Law.

We parametrically estimate subjects’ responsiveness to information in one task, and thus predict their behavior in other tasks. We find that subjects who update beliefs too conservatively have too low a willingness-to-pay for information, and subjects who update beliefs too much have too high a willingness-to-pay for information. In fact, responsiveness to information is by far the most important component of non-Bayesian belief updating in our experiment. For each subject, we use a one-parameter model of responsiveness to predict willingness-to-pay in ten different choice problems. The model explains about 20% of the individual variation in willingness-to-pay. This is about 80% of the total variation that can be explained by belief updating when we use an unconstrained procedure.

To buttress our case that responsiveness to information is a consistent individual trait, we perform a further test using a different choice environment. Subjects obtain Bayes posteriors.”
noisy information about a binary state of the world in a piecemeal fashion, and decide, after each piece of information, whether to take an exogenous lottery or to bet on the state of the world. Consistent with our hypothesis, subjects who are more responsive to information require less information before placing a bet on the state of the world. Thus, individual responsiveness is significantly correlated across three distinct choice environments.

We suggest some important implications of these results.

Our finding that subjects overvalue low-quality information and undervalue high quality information suggests that sellers of information may wish to split information in many smaller chunks rather than selling it as a whole. The finding that subjects have a disproportionate preference for information that may eliminate all uncertainty implies that it is profitable for sellers of information to (appear to) be able to provide information that is perfect in at least some of the states of the world.

Our results on consistent heterogeneity in responsiveness to information constitute a direct answer to one of the abiding puzzles in financial theory, the Milgrom-Stokey no-trade theorem (Milgrom and Stokey (1982)). This theorem roughly states that sophisticated agents starting from a Pareto efficient allocation will not exchange bets on payoff-relevant events once they receive private information. The no-trade theorem fails to hold when agents are heterogenous in their responsiveness to information, even when agents’ responsiveness to information is common knowledge. Hence, consistent heterogeneity in responsiveness can explain why financial trades occur in equilibrium between strategically sophisticated agents.

9 Koszegi and Rabin (2009) develop a model which implies that decision-makers are averse to receiving information piecewise. However, our findings are supported by an experiment conducted by Zimmermann (2014), who finds that individuals do not have a preference against piecewise information.

10 The theorem states that if a market with risk-averse traders with rational expectations starts in a Pareto optimal allocation (relative to traders’ prior beliefs), and traders receive private information, then traders will not exchange bets on payoff-relevant events. In particular, this result does not require the assumption of common priors, only a condition which roughly means that traders agree about how instrumentally useful information should be interpreted: Beliefs are required to be concordant.
Heterogeneity in responsiveness to information could also explain excessive price volatility in financial markets, as investigated by Shiller (1981). In competitive financial markets, stock prices are determined by the marginal investor. If, in equilibrium, marginal investors have more extreme beliefs about returns than the average agent in the market, then marginal investors are also likely to be more responsive to information than the Bayesian norm. This is a channel that could amplify price volatility in response to information shocks.

If, moreover, the identification of individuals who are more responsive to information is possible, the targeting of programs such as those intended to foster technology adoption in developing countries may be improved.

Finally, in settings where non-Bayesian updating is costly, such as medical decision making, subjects who are over- or under-responsive to information might be identified and given help to bring their decision-making in line with the normative benchmark.

1.1 Related Literature

Demand for Information [Hoffman (2012)] is the study most closely related to ours. Hoffman conducts a field experiment investigating internet domain name traders' willingness to pay for stochastic information. He finds the expected comparative statistics: willingness to pay increases with the accuracy of the information, and decreases with the extremeness of the prior of the subject. Similar to one of our results, Hoffman finds that willingness to pay for information falls short of a normative benchmark. Puzzlingly, Hoffman also finds that about a third of his subjects who purchase information do not use it.\(^{11}\)

Our study differs from Hoffman’s on many dimensions. Most importantly, we investigate how behavioral biases depend on the properties of the information structures, and we demonstrate that responsiveness to information is an important ex-

\(^{11}\)Subjects in Hoffman’s experiment make decisions that mimick those they engage in in their professional lives. Hence, subjects beliefs are possibly ego-relevant, which might influence some of Hoffman’s results.
planatory factor of the demand for information.

The remaining research that empirically studies the demand for information in non-strategic settings either considers information of a kind that should not change individuals’ actions, investigates demand for explicitly ego-relevant information, or studies preferences concerning the resolution of uncertainty over time.

Eliaz and Schotter (2010) and Bastardi and Shafir (1998) study the demand for non-instrumental information. Eliaz and Schotter’s subjects exhibit a positive willingness-to-pay for information if this information makes them more confident that they have chosen the right action, even when this information would not affect their decisions. Bastardi and Shafir use an across-subjects design to show that non-instrumental information structures may influence subjects’ behavior if they actively decide to wait for the arrival of this information. Subjects in the treatment group who decided to pursue information tended to base their actions on the signal realizations, even though subjects in the control group stated that they would take the same action regardless of the signal realization.

The studies considering ego-relevant information (Burks et al. (2013), Eil and Rao (2011), and Moebius et al. (2013)) typically find that subjects’ willingness-to-pay for information increases the more confident the subject is that the desirable state of the world obtains.12

The results about preferences for the resolution of uncertainty over time are more mixed. Zimmermann (2014) tests Koszegi and Rabin (2009)’s prediction that individuals are averse to receiving information in a piecemeal fashion, and finds no support for this hypothesis. On the other hand, Kocher et al. (2009) find that subjects holding a lottery ticket have a preference for delayed resolution of risk, and that this effect is driven by anticipatory utility.

The valuation of – and hence demand for – information in non-strategic settings has also been the topic of recent interest in the theoretical literature. Azrieli and

12In these studies, subjects are not asked to make any decisions after they learn the information they purchased.
Lehrer (2008) consider the set of functions that map an information structure into a valuation and provide a characterization of the subset of such functions that is consistent with Bayesian updating and expected utility. Athey and Levin (2001) study Bayesian updaters’ demand for information in monotone decision problems; and Cabrales et al. (2013a) and Cabrales et al. (2013b) derive settings in which information structures can be totally ordered by the reduction in the entropy of beliefs they afford. Our experiment lends partial support to the assumption that the valuation of information is well approximated by the Bayesian benchmark, but does not directly address this theoretical literature.

Belief Updating A recent literature demonstrates the importance of studying belief updating by showing that beliefs causally affect economic behavior. Costa-Gomes et al. (2012) investigate behavior in a trust game. These authors use an instrumental variable approach to show that a trustor’s beliefs about the level of re-payment causally affect how much she transfers to the trustee. Our work establishes that beliefs causally affect information demand behavior.

Heterogeneity in belief updating that is consistent within individuals has also been observed (but not explicitly investigated) in Peterson et al. (1965). These authors conducted a non-incentivized urns-and-balls experiment and observed that individuals who updated more conservatively than others in some tasks also tended to do so in closely related tasks. More recently, Augenblick and Rabin (2013) analyze a dataset on dynamic individual beliefs about geopolitical events, and show that if a forecaster’s belief stream for a given geopolitical event exhibits much movement, then the same forecaster’s belief streams for other events also tend to exhibit much movement. Relatedly, Moebius et al. (2013) rank divide their subjects into two groups of more and less conservative updaters. They show that for both groups measured posteriors about ability are equally predictive of a decision to enter a tournament that depends on ability. This suggests that conservative types of high ability take
too few risks while conservative types of low ability take too many risks, a prediction that receives support in Moebius et al.’s data.\footnote{Moebius et al. (2013) use exogenous random variation in the signal realizations as an instrument to establish causality.}

Our experiment more generally relates to the vast literature on belief updating (see Camerer (1995) for a review). The earlier papers in this literature conclude that Bayesian updating is a viable description of human belief updating, with the exception that humans tend to update more conservatively than Bayesian subjects would (see Peterson and Beach (1967) for a review).\footnote{Additionally, Benjamin et al. (2013) contains a comprehensive review the literature on belief updating experiments that use binary states and binary signals.} Our experiment lends some support to the idea that subjects’ behavior is reasonably well approximated by Bayesian updating, although we find little evidence of conservatism in belief updating for the average subject. The more recent papers in the literature on belief updating focus on non-Bayesian tendencies such as the representativeness heuristic (Kahneman and Tversky (1972), Grether (1980)). We designed our experiment to minimize the salience of such heuristics.

2 Experimental Design

2.1 Setup

We consider a setting in which information is valuable (solely) because it informs a subsequent choice. We focus on the simplest nontrivial such setting, which we call the prediction game. There is a binary state of the world $s \in \{0, 1\}$. An agent has an objective prior belief $P(s = 1) = \frac{1}{2}$. The agent then observes a realization $\sigma \in \{“0”, “1”\}$ of a stochastic signal before he makes a guess g concerning which of the states of the world obtains. The agent obtains a prize $k > 0$ if he guesses correctly, and 0 if he doesn’t. Importantly, the agent is aware of the pair of state-dependent probabilities $P_I(\sigma = “1” | s = 1)$ and $P_I(\sigma = “0” | s = 0)$ of each signal realization. We
denote the events \(\{ \sigma = "1" \} \) and \(\{ s = 1 \} \) by \("1" \) and \(1\), respectively, and abbreviate the 0-signal and the 0-state similarly.

We refer to a pair \(I = (P_I("1"|1), P_I("0"|0)) \) as an information structure\(^{15}\) \(15\). This information is sufficient for the agent to be able to employ Bayes’ Law to inform his guess about the state of the world.

We elicit agents’ willingness-to-pay to play the prediction game, by asking for incentivized reports of their uncertainty equivalents. That is, we ask what probability \(v_{I,i} \) leaves agent \(i\) indifferent between (i) the lottery that pays the prize \(k\) with probability \(v_{I,i} \) and 0 otherwise, and (ii) participating in the prediction game with information structure \(I\).\(^{16}\) This measure of willingness-to-pay rules out confounds from wealth effects and classical risk aversion.\(^{17}\) Henceforth, we refer to \(v_{I,i} \) as agent \(i\)’s valuation of information structure \(I\).\(^{18}\)

Even if we consider an agent who is not a Bayesian expected utility maximizer, we can use the agent’s subjective posterior beliefs \(P_{I,i}(\sigma|"\sigma") \) and signal probability assessments \(P_{I,i}("\sigma") \) to predict this agent’s valuation of information structure \(I\) — provided the agent (i) reduces compound lotteries, (ii) has preferences that depend only on final outcomes, and (iii) strictly prefers obtaining the prize \(k\) to not obtaining it. To assess his valuation of an information structure, such an agent first devises a strategy \(g("\sigma") \) mapping each possible signal realization into a guess about the state of the world. He then considers the probability \(P_{I,i}(g("\sigma")|"\sigma") \) with which he will guess the state of the world correctly after each signal realization "\(\sigma"\). Finally,

\(^{15}\)It is apparent that in our setting an information structure in the sense of Azrieli and Lehrer (2008) is fully described by a pair of probabilities.

\(^{16}\)Note that since \(v_{I,i} \) is a lottery between the best and worst monetary outcomes in this setting, if the agent agent’s preferences admit an expected utility representation, \(v_{I,i} \) is precisely the expected utility of the prediction game.

\(^{17}\)Under the assumptions of expected utility theory, agents’ preferences over lotteries are linear in probabilities (holding outcomes fixed). Thus, per Roth and Malouf (1979), payment procedures employing such two-outcome lotteries induce choice behavior that does not depend on the particulars of the Von Neumann-Morgenstern utility function.

\(^{18}\)If the signals were completely uninformative, the agent would have a 0.5 chance of winning the prize by guessing. \(v_{I,i} - 0.5 \) can thus be interpreted as the value that the agent places on observing a signal drawn from \(I\).
he takes the expectation of these probabilities with respect to the signal realization probabilities \(P_{I,i}(\sigma) \). Hence, his valuation of information structure \(I \) is given by

\[
v_{I,i} = P_{I,i}(g(\text{"1"})|\text{"1"}) P_{I,i}(\text{"1"}) + P_{I,i}(g(\text{"0"})|\text{"0"}) P_{I,i}(\text{"0"}).
\]

Our experiment is designed to elicit each constituent part of equation (1). In the information valuation task, we present subjects with ten different information structures, and elicit their valuations \(v_{I,i} \) for each of them. In the belief updating task, we elicit subjects’ subjective posterior probabilities \(P_{I,i}(\sigma|\text{"\sigma"}) \) and in the signal probability assessment task, we obtain the subjects’ assessment of the probability \(P_{I,i}(\text{"\sigma"}) \) of observing a given signal realization “\(\sigma \)”. The details of the implementation are discussed in section 2.3.

2.2 Research Questions

How would a classical agent behave in our setting? In our setting, an information structure is a pair of probabilities, \(I = (P_I(\text{"1"}|1), P_I(\text{"0"}|0)) \). Hence, the space of all information structures is the unit square \([0,1] \times [0,1]\). Our experiment focuses on the subspace \([0.5,1] \times [0.5,1]\). For information structures in this subspace, the optimal guessing strategy is to follow the signal, \(g(\text{"\sigma"}) = \sigma \). Using this, and replacing the subjective probabilities \(P_{I,i}(\sigma|\text{"\sigma"}) \) and \(P_{I,i}(\text{"1"}) \) in equation (1) by their objective (Bayesian) counterparts, we obtain the valuation of information structure \(I \) as predicted by the standard model\(^{19}\)

\[
v_{I}^{\text{theor}} = \frac{P_I(\text{"1"}|1) + P_I(\text{"0"}|0)}{2}
\]

\(^{19}\)There is another way of obtaining this expression: The agent’s optimal strategy is to guess \(s = 1 \) after signal “\(\text{"1"} \)”, and to guess \(s = 0 \) after signal “\(\text{"0"} \)”. Consequently, the probability that the agent guesses correctly is the sum of the probability that signal “\(\text{"1"} \)” realizes and the state is 1 and the probability that signal “\(\text{"0"} \)” realizes and the state is 0. Together with the fact that \(P(s = 1) = \frac{1}{2} \) we obtain the stated expression.
Informativeness
Asymmetry

Figure 1: The set $[0.5, 1] \times [0.5, 1]$ of information structures and the level curves of v_i^{theor}. If information structure I' lies to the northeast of I, then I' is more informative than I. If I' lies to the northwest of I, then I' is more asymmetric than I.

Figure 1 displays the set of information structures $I \in [0.5, 1] \times [0.5, 1]$ and the level curves of v_i^{theor}. We refer to v_i^{theor} as the informativeness of information structure I; this is the probability that the signal matches the state of the world. We refer to the orthogonal dimension as asymmetry.

Empirically, valuations of information structures may differ from the Bayesian predictions for three reasons.

First, a literature on belief updating (Massey and Wu (2005), Fiedler and Juslin (2006)) has found that subjects’ updates do not always take the properties of information structures into account to a sufficiently large degree. If a similar hypothesis holds for the valuation of information structures, we expect to find valuations that vary insufficiently with the informativeness of the information structures.

Second, the literature of decision making under risk (Andreoni and Sprenger (2012), Andreoni and Sprenger (2013), Gneezy et al. (2006), Keren and Willemsen (2008), Rydval et al. (2009), Simonsohn (2009)) finds that subjects have a disproportionate preference for certainty.\footnote{In Andreoni and Sprenger (2013) subjects comparing pairs of two-outcome lotteries. 38\% of} We therefore hypothesize that subjects will
have disproportionately high values for information structures where at least one signal realization yields certainty. These are the lotteries on the northern and eastern boundaries of Figure 1.

Third, a recent theoretical and experimental literature suggests that subjects dislike spreads in the first-stage distribution of two-stage lotteries that leave total success probability constant. (Ergin and Gul (2009), Halevy (2007), Halevy and Feltkamp (2005), Seo (2009), Yates and Zukowski (1976), Bernasconi and Loomes (1992)) We therefore hypothesize that subjects will, ceteris paribus, place higher value on more symmetric information structures. This implies that the indifference curves in Figure 1 will instead be convex.

Our experiment is designed to test for these three biases in the demand for information, by presenting subjects with a variety of information structures and eliciting their willingness-to-pay for information. We then elicit subjects’ posterior beliefs, and investigate whether these biases in the demand for information can be explained by non-Bayesian belief updating.

Our data confirm the first two hypotheses. Individual valuations vary insufficiently with the informativeness of the information structures, and subjects have a disproportionate preference for boundary information structures. We find no evidence of a preference for symmetric information structures. Using subjects’ elicited posterior beliefs, we find that biases in information valuation are well explained by non-Bayesian belief updating.

We conjecture that subjects will exhibit consistent individual heterogeneity when updating beliefs. In particular, we hypothesize that individuals have heterogeneous responsiveness to information: Some individuals’ beliefs move more in response to evidence than is warranted by Bayes’ Law, and some individuals’ beliefs move less. We investigate whether responsiveness is consistent; that is, whether a given subject exhibits similar responsiveness across different choice problems.

their subjects even exhibit preferences for certainty that violate stochastic dominance.
Our data confirm that subjects’ responsiveness to information is consistent both within and across choice environments. Individual choices are highly correlated within each choice environment. An individual’s responsiveness, as estimated in one choice environment, significantly predicts their behavior in two other choice environments. In particular, the relationship between belief updating and information valuation is substantially captured by a simple model of responsiveness.

2.3 Implementation

We implemented the experiment on computers using variations of familiar urns-and-balls tasks. In each part of the experiment, subjects faced pairs of boxes filled with black and white balls. We distributed and read aloud the instructions directly before each part and (correctly) informed subjects that their choices in any part would not affect their earnings from any other part.

Subjects received no feedback as to the outcomes of their choices in any part of the experiment until the experiment was concluded. At the end of the experiment, the computer selected a random part and a random decision within that part for payment so that subjects had monetary incentives to answer each of our questions truthfully. The experiment proceeded in five parts, as follows:

Part 1: Prediction Game Part 1 of the experiment was intended to familiarize subjects with the prediction game that they would subsequently be asked to value. In this part, each subject played six rounds of the prediction game. Subjects were presented with two boxes, Box X and Box Y. Box X contained 10 balls, the majority of which were black. Box Y contained 20 balls, the majority of which were white.
The subject observed the contents of the boxes, in the manner shown by the screenshot above. The computer then randomly (and secretly) selected a box, each with 50% probability, and showed the subject a ball drawn at random from that box. The subject then guessed which box was selected, receiving $35 if she guessed correctly, and $0 otherwise. Subjects played the prediction game for six different information structures. The box selected corresponds to the state of the world \(s \), while the color of the ball drawn corresponds to the signal realization \(\sigma \).

Part 2: Information Valuation Task Part 2 of the experiment was designed to elicit subjects’ valuations of information structures \(v_{I,i} \). Subjects were presented with 10 different pairs of boxes, corresponding to the information structures depicted in figure 2. We chose the information structures so as to be able to easily test for preferences about symmetry and certainty. For each pair of boxes, subjects were asked to report their uncertainty equivalents for playing the Prediction Game with those pairs of boxes. Subjects made their choices by filling in a multiple price list (a Becker-deGroot-Marschak mechanism), choosing between pairs of options: “Play the
Prediction Game” or “Win $35 with chance p, for p between 1% and 100%, in 3% intervals. Subjects were informed that if the current round was randomly chosen for payment, a random line from the price list would be selected, and their decision on that line would be carried out. Hence, truthful revelation was strictly optimal for subjects. We constrained subjects to have at most one switching point. Half the subjects, chosen at random, evaluated the ten information structures in reverse order.

We chose to have different ball totals in Box X and Box Y in order to ensure that ball-counting heuristics deliver incorrect answers. This reduces Type II errors when testing the standard model, by ensuring that these na"ive heuristics are not observationally equivalent to Bayesianism.

Part 3: Belief Updating Task In this part of the experiment we elicited $P_{i,1}(1\mid1')$ and $P_{i,0}(0\mid0')$. Specifically, subjects were asked to assess, for each of the 10 information structures:

(i) How likely it was that Box X was selected, supposing the drawn ball was black.

(ii) How likely it was that Box Y was selected, supposing the drawn ball was white.

23 We chose intervals of 3% so as to discourage the use of rounding heuristics specific to the laboratory environment. In an unrelated experiment we had found that subjects who are asked to report their beliefs by typing integers in the interval 0 - 100% are very likely to round to the nearest 5%.

24 This mechanism was suggested in Allen (1987), Grether (1992), and Karni (2009), Schlag and van der Weele (2009), and has been used, amongst others, by Hoelzl and Rustichini (2005) and Moebius et al. (2013).

25 We enforced single switching for two reasons. First, in our experiment, subjects had to fill in a total of 40 multiple price lists, and allowing subjects to select the switching point rather than to click 33 boxes for each list kept the experiment sufficiently short (just under 2.5 hours per session). Second, by enforcing single switching we avoid exercising discretion about how to interpret multiple switches. Andersen et al. (2006) finds that enforcing a single switching point in a multiple price list has no systematic effect on subject responses.

26 This order was determined randomly by a computer program.

27 If there were 10 balls in each box, then the result of the following heuristic would coincide with the Bayesian valuation: count the number of black balls in box X, count the number of white balls in box Y, sum them up and divide by 20.
Figure 2: The set of information structures that was used in the information valuation task, the belief updating task and the signal probability assessment task, as well as the order in which subjects went through them. (Approximately half of the subjects proceeded through the information structures in reverse order.) The horizontal axis measures the proportion of black balls in box X and the vertical axis measures the proportion of white balls in box Y.

We incentivized subjects using the strategy method: for a given information structure subjects were first asked to suppose that the ball drawn was black, and fill in a multiple price list with the pairs of options “Receive $35 if the Selected Box is Box X” and “Receive $35 with chance p”, for p between 1% and 100%, in 3% intervals (the if black list). They then filled in a similar price list where they were asked to suppose that the ball drawn was white, and where the evaluation option was betting on box Y rather than X (the if white list). Subjects knew that if a round from part 3 was drawn for payment, a ball would be drawn from the selected box at random, and their decision on a randomly chosen line of the corresponding price list would be implemented. Subjects made their choices in the same order as in part 2. Since subjects were asked to report their updated beliefs only after they evaluated all 10 information structures, we avoided priming subjects to think about information valuation in a Bayesian way.
Part 4: Eliciting Signal Probabilities We elicited the subjects’ signal probability assessments $P_{I,i}(“σ”) by asking them, for each of the 10 information structures, how likely they thought it was that from the box that we would randomly select, we would draw a ball of a given color. The computer randomly determined whether a subject was asked to assess the likelihood of a black or a white ball. Subjects made their choices in the same order as in part 2, again via multiple price lists with a $35 incentive.28

After completing part 4 of the experiment, subjects participated in the Gradual Information Task. The details of this part of the experiment are explained in section 5.4. The final part of the experiment was a questionnaire which included demographic variables, psychological measures, and the questions from the Cognitive Reflection Test (CRT) (Frederick (2005a)). Questionnaire responses are discussed in Section 6 and analyzed in detail in Appendix A.

Procedures We conducted the experiment at the Stanford Economics Research Laboratory (SERL) at Stanford University using z-tree (Fischbacher (2007)). Undergraduate and graduate students were recruited from the SERL subject pool database using standard recruiting procedures via email. We excluded graduate and undergraduate students in psychology as well as graduate students in economics from participation. A total of 108 individuals participated in 7 sessions of the experiment, in addition to 13 individuals for a pilot session29 and 35 individuals for two additional investigatory sessions.30 All sessions were run in May 2013, and each experimental session took between 2 and 2.5 hours to complete, including payment.

Each subject received a $5 show-up payment, an additional $15 for completing

28A computer error in the first two sessions caused all subjects to proceed through the set of information structures in the order 1, 2, . . . , 10, rather than having half the subjects proceed in the order 10, 9, . . . , 1. This bug was fixed in the remaining sessions.

29We do not include data from the pilot session in any analysis.

30In these sessions, we also elicited valuations for the wholly uninformative information structure \{0.5, 0.5\}, to investigate whether subjects correctly evaluated this as being worth a 50% chance at the prize. Our results are robust to the use of these data, which are included in appendix B.1.
the experiment, and played for a prize of $35. In addition, a subject could earn $1 per CRT question answered correctly.

We provided subjects with pen and paper, and neither encouraged nor discouraged their use. The same two experimenters were present in each session.

3 Preliminary Analysis

Conventions We recode the data such that for every information structure I, $P_I(“1”|1) \geq P_I(“0”|0)$. Hence, “1” is the more likely and thus less informative signal realization.

As the right side of Figure 3 indicates, the information structures in this experiment can be divided into three groups, as follows:

(i) Information structures S1, S2, S3, and S4 are evenly spaced symmetric information structures.

(ii) Information structures A1, A2, and A3 are asymmetric information structures that are not on the boundary.

(iii) Information structures B1, B2, and B3 are on the boundary. They afford certainty for one realization of the signal.

Since we have used multiple price lists in with increments of 3 percentage points, our data are interval coded. Throughout, we use the midpoint of the interval for analysis.

Subject classification We first test whether subjects understood that following the signal is the optimal strategy in the prediction game. In part 1 of the experiment, 85% of our subjects made the correct prediction for all six information structures and just 2 subjects (1.85%) made more than 2 mistakes\footnote{Moreover, 44.8% of all mistakes occur for the information structure $I = (0.6, 0.6)$ which is the information structure for which such errors are cheapest.}. We therefore assume that
subjects’ valuation of information structures is based on anticipation of this optimal strategy.

Nevertheless, some subjects demonstrated a fundamental misunderstanding of subsequent parts of the experiment.

In the information valuation task, no subject should report a valuation $v_{I,i} < 0.5$ for any information structure. This is because the prior probability of either box is 50%, and hence even disregarding all information and randomly guessing a state of the world in the prediction game dominates playing an lottery with success probability lower than 0.5. In the belief updating task, no subject should update beliefs in a direction opposite from the Bayesian update for any information structure.

We classify an individual as an outlier subject if he makes a total of three or more such mistakes. Of the 108 participants in our experiment, 16 (14.81%) are outlier subjects. This is comparable with the 10 - 15% of noisy subjects that are found in studies of decision making under risk.

We perform our analysis on the subsample of non-outlier subjects. Including the outlier subjects does not substantially change any of our results. The corresponding analysis is presented in Appendix B.1. One observation for one subject (out of 1430 total observations) was not recorded due to a database error.

32 In total, subjects were asked 30 decision problems in which they could make one of these mistakes.
33 Outlier subjects seem to have a lower understanding of the experiment by other measures. They are nearly twice as likely as non-outlier subject to assign the lower posterior probability to the state with the higher Bayesian posterior probability (35.32% vs. 19.54% on asymmetric non-boundary information structures). Moreover, they are five times as likely as non-outlier subjects to report at least one posterior probably two or more categories below 100% in cases in which the Bayesian posterior is one (31.25% vs. 6.52%).
34 In these studies, subjects are excluded if they exhibit multiple switching points in multiple price lists. See, e.g., Holt and Laury (2002).
35 This occurred for Subject 7 in Session 9, whose choices for the information structure (.7,.7) are missing.
4 Demand for Information

How well does the standard model predict average valuations of information structures? Let $\Delta v_{I,i} = v_{I,i} - v_{I,i}^{\text{theor}}$ be the difference between the elicited valuation of information structure I and its theoretical valuation, for subject i. Figure 3 plots the mean difference (across subjects) for each information structure. Deviations from the standard model are apparent, but do not exceed eight percentage points for any information structure. We reject the null hypothesis that mean data conform to the standard model at any conventional level of significance ($p < 0.001$).

What drives these systematic deviations from the theoretical benchmark? Perhaps the most salient aspect of Figure 3 is the fact that subjects appear to overvalue uninformative information structures and undervalue informative information structures. In addition, boundary information structures seem to be valued more highly than equally informative information structures in the interior.

Formally, we estimate the model

$$v_{I,i} = \beta_0 + \beta_1 v_{I,i}^{\text{theor}} + \beta_2 a_I + \beta_3 b_I + \epsilon_{I,i}$$

Figure 3: Mean deviation of valuation $v_{I,i}$ from the theoretical benchmark $v_{I,i}^{\text{theor}}$. Information structures are arranged in order of increasing informativeness. Standard errors clustered by subject.
Table 1: Aggregate valuations of information structures.

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
<th>(7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Info Structures</td>
<td>[S,A,B]</td>
<td>[S,A,B]</td>
<td>[S]</td>
<td>[S,A]</td>
<td>[S,B]</td>
<td>[S,B]</td>
<td>[S,A]</td>
</tr>
<tr>
<td>Dependent Var</td>
<td>$v_{1,i}$</td>
<td>$v_{1,i}$</td>
<td>$v_{1,i}$</td>
<td>$v_{1,i}$</td>
<td>$v_{1,i}$</td>
<td>$v_{1,i}$</td>
<td>$v_{1,i}$</td>
</tr>
<tr>
<td>v_{i}^{theor}</td>
<td>.660***</td>
<td>.718***</td>
<td>.670***</td>
<td>.682***</td>
<td>.704***</td>
<td>.646***</td>
<td>.683***</td>
</tr>
<tr>
<td></td>
<td>(.0407)</td>
<td>(.0403)</td>
<td>(.0438)</td>
<td>(.0419)</td>
<td>(.0408)</td>
<td>(.0435)</td>
<td>(.0421)</td>
</tr>
<tr>
<td>Asymmetry</td>
<td>.00506</td>
<td></td>
<td>.00506</td>
<td>.0241***</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(.0240)</td>
<td></td>
<td>(.0240)</td>
<td>(.0279)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Boundary</td>
<td>.0241***</td>
<td></td>
<td>.0241***</td>
<td>.0250***</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(.00779)</td>
<td></td>
<td>(.00779)</td>
<td>(.00804)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Constant</td>
<td>.239***</td>
<td>.202***</td>
<td>.235***</td>
<td>.223***</td>
<td>.216***</td>
<td>.252***</td>
<td>.224***</td>
</tr>
<tr>
<td></td>
<td>(.0334)</td>
<td>(.0340)</td>
<td>(.0348)</td>
<td>(.0340)</td>
<td>(.0342)</td>
<td>(.0351)</td>
<td>(.0339)</td>
</tr>
<tr>
<td>Observations</td>
<td>919</td>
<td>919</td>
<td>367</td>
<td>643</td>
<td>643</td>
<td>643</td>
<td>643</td>
</tr>
<tr>
<td>R-squared</td>
<td>.304</td>
<td>.297</td>
<td>.325</td>
<td>.262</td>
<td>.340</td>
<td>.346</td>
<td>.263</td>
</tr>
</tbody>
</table>

Standard errors in parentheses. Clustered by subjects.

Reported significance levels for v_{i}^{theor} concern the hypothesis that this coefficient is 1.

*** p<0.01, ** p<0.05, * p<0.1

where $a_I = \frac{P(1'|1)−P(0'|0)}{2}$ is the asymmetry of an information structure I, measured by its off-diagonal distance from the 45-degree line. b_I is a dummy variable that equals 1 if I is a boundary information structure, and 0 otherwise. The standard rational agent model requires that $\beta_1 = 1$ and $\beta_0 = \beta_2 = \beta_3 = 0$.

Results are reported in Column (1) of table 1. We find that β_0 is significantly greater than 0 and β_1 is significantly less than 1, indicating that subjects indeed overvalue uninformative information structures and undervalue informative information structures.

We find a small but highly significant boundary effect, indicating that subjects

36 Recall that we normalized the data such that $a_I \geq 0$ for every information structure I.

37 This result could arise mechanically for two reasons. First, because subjects proceed through these information structures in sequence, a heuristic of anchoring and imperfect adjustment could generate behavior that seems like insufficient reaction to the properties of the information structures. Second, behavioral noise (in the sense of a trembling hand) is subject to truncation at 1 and ‘quasi-truncation’ at 0.5 in our setting. The skewness of the error distribution at the boundaries would also generate such a result. We investigate the latter hypothesis in appendix B.2 and find that it falls significantly short of explaining the data.
have a preference for information structures where one signal realization removes all uncertainty, on the order of 2.4 percentage points38.

We do not find asymmetry effects.

To be sure that our results are not driven by functional form mis-specification, we check that they are not changed when assessing cleanly comparable subsets of the data. The over-value/under-value phenomenon persists even when we no longer include a_I and b_I in the regression (Column 2), when we consider only symmetric, evenly spaced information structures (Column 3), when we exclude all boundary information structures (Column 4), and when we exclude all asymmetric non-boundary information structures (Column 5).

Boundary effects persist, even when we only compare boundary information structures to symmetric information structures (Column 6), and their magnitude is not substantially changed.

We do not find asymmetry effects, even when we compare only non-boundary asymmetric information structures with symmetric information structures (Column 7). While in this case the sign of β_2 is negative, it is not statistically significant. To assess the magnitude of the estimated coefficient, note the information structure $(0.5, 1)$ has the maximum possible asymmetry, which is 0.25. This information structure is predicted to be valued only 0.7 percentage points less highly than the equally informative, perfectly symmetric information structure $(0.75, 0.75)$.

Result 1. *In the Information Valuation Task,*

(i) *Subjects tend to overvalue less informative information structures and undervalue highly informative information structures.*

(ii) *We find highly significant positive boundary effects of approximately 2.4 percentage points.*

38This result is virtually unchanged when we exclude all individuals who expressed a posterior two or more categories below 100\% in the cases where the Bayesian posterior is 1.
We find no evidence of asymmetry effects.

4.1 Is the demand for information driven by belief updating?

If subjects have non-standard belief-updating procedures, that could cause non-standard valuations of information structures. Alternatively, subjects could exhibit non-standard information valuations because, even conditional on their own beliefs, they have behavioral traits that affect how they value information. We use the data elicited in the Belief Updating Task and the Signal Probability Assessment task to distinguish these hypotheses. The resulting exercise also establishes that beliefs have a causal effect on the demand for information in our experiment.

We define the empirically predicted valuation as

\[v_{I,i}^{\text{pred}} = P_{I,i}(\text{“}1\text{”})P_{I,i}(1|\text{“}1\text{”}) + P_{I,i}(\text{“}0\text{”})P_{I,i}(0|\text{“}0\text{”}) \]

\[v_{I,i}^{\text{pred}} \] is the valuation for information structure \(I \) that would be elicited from a subject with classical preferences over information, if she did not face an objective lottery, but instead faced a subjective lottery with probabilities determined by her reported beliefs.

Figure 4 is analogous to figure 3 but subjects’ valuations are now compared to the empirical benchmark \(v_{I,i}^{\text{pred}} \) instead of the theoretical benchmark \(v_{I,i}^{\text{theor}} \). The over-value/under-value phenomenon seems to disappear, as do the boundary effects. Moreover, valuations appear to be too low, on average.

Are non-standard information valuations indeed caused by subjects’ beliefs? A naïve empirical strategy would be to regress \(v_{I,i} \) on \(v_{I,i}^{\text{pred}}, a_i, \) and \(b_I \). The results from this are reported in Column (1) of Table 2. This strategy is problematic for two reasons. First, beliefs may be measured with error. If so, attenuation bias would lower the estimated coefficient on \(v_{I,i}^{\text{pred}} \). Second, there may be reverse causation: Having...
reported their valuations, subjects may be primed to report self-consistent ex post beliefs.\footnote{Reverse causation seems unlikely: Each subject is asked to evaluate ten different information structures, and, for each information structure, there are nine intervening choice problems between the elicitation of values and the elicitation of ex post beliefs. Reporting self-consistent beliefs would thus be an impressive feat of memory.} This would raise the estimated coefficient on $v_{I,i}^{\text{pred}}$.

Consequently, we instrument for $v_{I,i}^{\text{pred}}$ with the Bayesian valuation, $v_{I,i}^{\text{theor}}$. The identifying assumption is that the correct Bayesian beliefs affect subjects’ valuations only via their subjective beliefs.\footnote{This exclusion restriction would not hold if, for instance, subjects were subconsciously influenced by the correct Bayesian posteriors when evaluating information structures, but this influence was not reflected in their ex post beliefs.} We report first-stage regressions of $v_{I,i}^{\text{pred}}$ on $v_{I,i}^{\text{theor}}$ in Column (2) of Table 2. This confirms that the instrument is relevant, since it covaries with $v_{I,i}^{\text{pred}}$.

We report the results of IV estimation in Columns (3) of Table 2. The coefficient on $v_{I,i}^{\text{pred}}$ is strongly positive, and not significantly different from 1 ($p = .229$). This suggests that subjects’ non-standard belief updating procedures have a causal impact on their willingness to pay for information. The boundary dummy is slightly, but significantly, negative. This indicates that the positive boundary effects in the pre-
<table>
<thead>
<tr>
<th>Method</th>
<th>OLS</th>
<th>OLS</th>
<th>IV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dependent Var</td>
<td>$v_{I,i}$</td>
<td>$v_{pred}^{I,i}$</td>
<td>$v_{I,i}$</td>
</tr>
<tr>
<td>$v_{pred}^{I,i}$</td>
<td>.662***</td>
<td>1.086</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(.0741)</td>
<td>(.0712)</td>
<td></td>
</tr>
<tr>
<td>$v_{theor}^{I,i}$</td>
<td>.608***</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(.0266)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Asymmetry</td>
<td>-.0251</td>
<td>-.020</td>
<td>.0272</td>
</tr>
<tr>
<td></td>
<td>(.0275)</td>
<td>(.0162)</td>
<td>(.0275)</td>
</tr>
<tr>
<td>Boundary</td>
<td>.0189</td>
<td>.060***</td>
<td>-.0415***</td>
</tr>
<tr>
<td></td>
<td>(.0139)</td>
<td>(.0053)</td>
<td>(.0117)</td>
</tr>
<tr>
<td>Constant</td>
<td>.234***</td>
<td>.309***</td>
<td>-.0962*</td>
</tr>
<tr>
<td></td>
<td>(.0600)</td>
<td>(.0221)</td>
<td>(.0561)</td>
</tr>
<tr>
<td>Instrument</td>
<td>$v_{theor}^{I,i}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Observations</td>
<td>919</td>
<td>919</td>
<td>919</td>
</tr>
<tr>
<td>R-squared</td>
<td>.342</td>
<td>.501</td>
<td>.252</td>
</tr>
</tbody>
</table>

Standard errors in parentheses. Clustered by subjects.

Reported significance levels for $v_{pred}^{I,i}$ concern the hypothesis that this coefficient is 1.

*** p<0.01, ** p<0.05, * p<0.1

Table 2: Relationship between beliefs and valuations.

Previous section operate mainly through the subjects’ belief-updating procedures. The negative constant term in Column (3) indicates that subjects undervalue information, even conditional on their own subjective beliefs, by about 9.6 percentage points ($p = .086$).

In Result [1] we identified two non-standard features of information demand; subjects overvalue less informative information structures and undervalue highly informative information structures, and exhibit positive boundary effects. The analysis above indicates, however, that subjects’ information demand exhibits a one-to-one response to their own subjective beliefs, and does not exhibit positive boundary effects once subjective beliefs are controlled for. We conclude that both behavioral anomalies identified in Result [1] operate through the channel of non-standard belief...
Result 2. Non-standard information demand is substantially explained by non-standard belief updating. Subjects under-value information even relative to their own beliefs.

5 Consistent Individual Heterogeneity

It is clear from the preceding section that belief-updating is a multi-faceted phenomenon. Subjects deviate from the standard model in several ways: They overrespond to low-information signals and under-respond to high-information signals. They also exhibit certainty effects. In this section, we investigate individual-level variation in information demand and belief-updating. Even though belief-updating is a complex phenomenon, we find that a one-parameter model captures much of the variation in behavior across subjects.

First, we demonstrate that individual deviations from the mean valuations are not i.i.d. but are consistent within subjects: a subject who overvalues some information structures tends to overvalue all information structures, and by a similar amount. An analogous statement holds for belief updating.

We then show that individual belief updating behavior predicts individual information demand. Using only data from the Belief Updating Task, we estimate a single-parameter model of responsiveness to information. Estimating a value of this parameter for each subject, we generate out-of-sample estimates of behavior in the Information Valuation Task. This simple model explains more than 80% of that part

41 Moreover, we do not find asymmetry effects even controlling for subjects’ belief-updating. Hence it is not the case that the absence of asymmetry effects relative to the Bayesian benchmark is caused by a preference for symmetric information structures and a countervailing belief-updating bias.

42 One might worry that such a correlations could be spuriously caused by factors such as subjects’ differential tendencies to avoid extreme options in the multiple price lists, or by framing effects that differentially affect individuals. Such factors, however, could not explain the out-of-sample predictive power of responsiveness to information in the Gradual Information Task analyzed in section 5.4. Moreover, appendix B.3 shows that subjects’ responsiveness to information is stable within and across the Belief Updating and Information Valuation Tasks even when these factors are statistically controlled for.
of non-standard valuation behavior that is due to non-standard belief updating.

Finally, we show that responsiveness to information is significantly correlated with behavior in a second out-of-sample environment, the Gradual Information Task.

From this we conclude that responsiveness to information is a personality trait that is stable across different choice environments. It is orthogonal to measures of mathematical aptitude and cognitive style, including subjects’ self-reported knowledge of Bayes’ law.

5.1 Are individuals consistent within tasks?

We find evidence that subjects have internally consistent directional biases, both in information valuation and in belief updating.

Formally, we define the difference between subject i’s valuation of information structure I and the theoretical benchmark by $\Delta v_{I,i} := v_{I,i} - v_{I,i}^{\text{theor}}$. Similarly, we define the difference between subject i’s posterior and the theoretical benchmark by $\Delta P_{I,i}(\sigma|\pi) = \text{logit}(P_{I,i}(\sigma|\pi)) - \text{logit}(P_{I}(\sigma|\pi))$, where $\text{logit}(x) = \log \left(\frac{x}{1-x} \right)$.

Recall that, for each task, we have 10 observations per subject, one for each information structure. If subjects are internally consistent within a task, then if we split our sample, a subject’s average deviation for two of the information structures should be highly correlated with her average deviation for the other eight. We calculate these correlations for each task, taking the average over all possible sample splits into subsets of 2 and 8 information structures. These correlations are 0.765 (s.e. 0.041) in the case of $\Delta v_{I,i}$, 0.707 (s.e. 0.51) in the case of $\Delta P_{I,i}(1|\pi)$, and 0.580 (0.075) in the case of $\Delta P_{I,i}(0|\pi)$. All of them are highly significantly positive. This is robust to alternative methods of measuring consistency, such as the Cronbach alpha statistic.

43 We control for order and session fixed effects.
44 To perform this exercise with $\Delta P_{I,i}(0|\pi)$ we drop the boundary information structures, and split the sample in pieces of two and five information structures. This is because $\text{logit}(x)$ is undefined for $x = 1$. We bootstrap the standard errors by drawing 1000 bootstrap samples.
45 For a vector (X_1, \ldots, X_n) of random variables, Cronbach’s alpha is defined by $\alpha(X_1, \ldots, X_n) = \frac{\sum_{k=1}^{n} \text{var}(X_k) - \text{cov}(X_i, X_j)}{\sum_{k=1}^{n} \text{var}(X_k)}$.

29
We summarize this finding in the following result:

Result 3. Subjects are internally consistent within tasks. Individual deviations from the theoretical benchmark for valuations are highly correlated across information structures. The same holds for posterior beliefs.

5.2 A structural model of responsiveness to information.

Why do our subjects exhibit this consistency? We hypothesize that subjects differ in their responsiveness to information, a personal characteristic that scales the movement of their beliefs upon receiving information.

We estimate a structural model of individual responsiveness to information as follows: Note that for a Bayesian with prior \(p = P(s = 1) \) and information structure \(I \) the following formula defines the posterior \(q(\sigma) = P_I(s = 1|\sigma) \):

\[
\logit(q(\sigma)) = \logit(p) + \log \left(\frac{P_I(\sigma|1)}{P_I(\sigma|0)} \right)
\]

where \(\logit(x) := \log \left(\frac{x}{1-x} \right) \). Hence, a Bayesian attaches weight 1 to the log-likelihood ratio of the data. We generalize (5) to let each subject \(i \) be more or less responsive to information than a Bayesian, by allowing for weight \(\alpha_i \) on the log-likelihood ratio

\[
\frac{\alpha_i}{n} \left[1 - \sum \frac{\text{var}(X_{i,j})}{\text{var}(\sum X_{i,j})} \right].
\]

Higher values signify higher internal consistency. The Cronbach alpha statistic is 0.899, 0.875 and 0.737 for \(\Delta v_{I,i}, \Delta P_{I,i}(1|1) \), and \(\Delta P_{I,i}(0|0) \), respectively. With the exception of \(\Delta P_{I,i}(0|0) \), this compares favorably with the standard benchmark of 0.8, indicating a high consistency of behavior within parts of the experiment. See e.g., [Kline (1999)].
of the data.

\[
\logit(q_i(\text{“}\sigma\text{”})) = \logit(p_i) + \alpha_i \log \left(\frac{P_I(\text{“}\sigma\text{”}|1)}{P_I(\text{“}\sigma\text{”}|0)} \right)
\]

(6)

The parameter \(\alpha_i\) is subject \(i\)’s responsiveness to information. Using only the data from the Belief Updating Task, we estimate separately for each subject the following seemingly unrelated regressions (SUR) model:

\[
\begin{bmatrix}
\logit(P_{I,i}(1|\text{“}1\text{”})) \\
\logit(P_{I,i}(0|\text{“}0\text{”}))
\end{bmatrix} = \alpha_i \begin{bmatrix}
\log \left(\frac{P_I(\text{“}1\text{”}|1)}{P_I(\text{“}1\text{”}|0)} \right) \\
\log \left(\frac{P_I(\text{“}0\text{”}|0)}{P_I(\text{“}0\text{”}|1)} \right)
\end{bmatrix} + \begin{bmatrix}
\epsilon_{1,i} \\
\epsilon_{0,i}
\end{bmatrix}
\]

(7)

Logit priors do not enter this equation because \(p = 1/2\) in the Belief Updating Task, and hence \(\logit(p_i) = 0\).

We do not assert that this one-parameter model fully captures belief-updating behavior. In particular, it does not produce the over-value/under-value phenomenon or the certainty effects that we have documented in Section 4. This is a deliberately minimal model, selected to be transparent and to avoid over-fitting.

Figure 5 displays the range of the estimated parameters \(\hat{\alpha}_i\). Our average subject is Bayesian – the mean \(\hat{\alpha}_i\) is 1.029. The \(\hat{\alpha}_i\) are quite variable across subjects, with

\[\text{Grether (1980) and Holt and Smith (2009) estimate a similar models. Grether’s specification differs from ours in that he also allows the weight (denoted \(\beta\)) on the logit prior to differ from 1. We consider this unattractive: for any } \beta > 1, \text{ observing a sequence of signals from a perfectly uninformative information structure lets beliefs converge to 1 or 0, whereas for any } \beta < 1, \text{ observing such a sequence lets beliefs converge to 0.5, regardless of the prior. Holt and Smith’s specification differs from ours in that they include a constant term in their regression. We consider this unattractive for a similar reason: for any constant term that differs from zero, observing a sequence of signals from a perfectly uninformative information structure lets beliefs converge to 1 or 0.} \]

\[\text{We use the seemingly unrelated regression procedure rather than ordinary least squares, because it seems plausible that the errors } \epsilon_{1,i} \text{ and } \epsilon_{0,i} \text{ on } P_{I,i}(1|\text{“}1\text{”}) \text{ and } P_{I,i}(0|\text{“}0\text{”}) \text{ are correlated for any given information structure, and hence the SUR procedure provides us with more efficient estimates. We use the data on all the information structures but the boundary information structures } f, h, \text{ and } j \text{ to estimate (7). We do so because the logit}(P_{I,i}(0|\text{“}0\text{”})) \text{ is not defined when } P_{I,i}(0|\text{“}0\text{”}) = 1, \text{ which is frequently the case for boundary information structures.} \]

\[\text{Section 5.4 shows that our estimates of responsiveness to information have predictive power even in the Gradual Information Task, in which subjects update from non-uniform priors in most cases.} \]

\[\text{Enrico Fermi attributed the following quote to John von Neumann: “With four parameters I can fit an elephant, and with five I can make him wiggle his trunk.” (Dyson (2004))} \]
a standard deviation of 0.266, a minimum of 0.196 and a maximum of 2.191. We reject the null hypothesis that $\hat{\alpha}_i = 1$ at the 5% level for 37% (34 of 92) subjects. In Appendix \[A\] we show that both the level of responsiveness, and the extent to which responsiveness differs from the Bayesian value of 1 are unrelated to measures of mathematical aptitude and cognitive style, including subjects’ self-reported knowledge of Bayes’ law.

5.3 Are individuals consistent across tasks?

If responsiveness to information is a *stable* individual trait, then our individual-level estimates of responsiveness should explain behavior in the Information Valuation Task (an out-of-sample environment). If responsiveness to information is an *important* trait in our setting, then we should not gain much explanatory power by using the belief updating data in a way that allows for idiosyncratic deviations for each information structure rather than by using responsiveness alone.

Before we test these hypotheses, we establish that subject behavior is indeed correlated across the Information Valuation Task and the Belief Updating Task. For
a given information structure, the partial correlation between $\Delta v_{I,i}$ and $\Delta P_{I,i}(0|"0") + \Delta P_{I,i}(1|"1")$, controlling for $v_{I,i}^{\text{theor}}$, is .339 ($p < .0001$). Hence, a subject’s valuations of each information structure are substantially explained by her posterior beliefs for that information structure, even after we control for informativeness.

To investigate what part of the variation in information demand we can explain using responsiveness to information we proceed more structurally. We use the data from the Belief Updating Task to construct two distinct predictors of information demand behavior, and compare their explanatory power.

Our unconstrained predictor $\Delta v_{I,i}^{\text{pred}}$ uses each subject’s posterior beliefs to predict how far her valuation of an information structure should deviate from the Bayesian benchmark separately for each information structure. This permits idiosyncratic deviations for each information structure. Hence, it may be influenced by many distinct belief updating biases along which individuals may be heterogenous, such as different degrees of nonlinear probability weighting, different insensitivity to signal characteristics, different rules of thumb, and so on. It also captures the over-value / under-value effect and the boundary effects we documented in section 4. Formally, our unconstrained predictor of individual i’s deviation for information structure I is

$$
\Delta v_{I,i}^{\text{pred}} := v_{I,i}^{\text{pred}} - v_{I,i}^{\text{theor}}
$$

Our constrained predictor $\Delta v_{I}(\hat{\alpha}_i)$ uses only a subject’s estimated parameter of responsiveness to predict how far her valuations should deviate from the Bayesian benchmark. That is, for each subject and each information structure, we use that subject’s $\hat{\alpha}_i$ to predict her posterior beliefs $\hat{P}_I(\sigma|"\sigma"; \hat{\alpha}_i)$ and valuations $\hat{v}_I(\hat{\alpha}_i) = P_I(\text{"1"})\hat{P}_I(1|"1"; \hat{\alpha}_i) + P_I(\text{"0"})\hat{P}_I(0|"0"; \hat{\alpha}_i)$. We then define the constrained predictor $\Delta v_I(\hat{\alpha}_i) := \hat{v}_I(\hat{\alpha}_i) - v_I^{\text{theor}}$. This predictor permits variation only via the estimated parameter $\hat{\alpha}_i$.

We compare the explanatory power of our predictors $\Delta v_{I,i}^{\text{pred}}$ and $\Delta v_{I}(\hat{\alpha}_i)$ by esti-

Alternatively, one could exclude data from the Signal Probability Assessment task, and construct $v_{I,i}^{\text{upd}} = P(\text{"1"})P_{I,i}(1|"1") + P(\text{"0"})P_{I,i}(0|"0")$. This specification uses the true signal probabilities and the elicited posterior beliefs. The results that follow are essentially unchanged if we use this specification instead.
mating the following model

$$\Delta v_{I,i} = \beta_0 + \beta_1 \Delta v_{I,i}^{pred} + \beta_2 \Delta v_I(\hat{\alpha}_i) + \epsilon_i$$ \hspace{1cm} (8)

We interpret the R^2-coefficient of this model as the maximal part of the variance in the valuations of information structures that can be explained by belief updating. To assess how well our model of responsiveness explains this variance, we estimate model (8) with β_1 restricted to 0.

The results are in Column 1 and 2 of Table 3. The R^2 of the unconstrained model is 22.8%, which compares to an R^2 of 19.4% for the constrained model. This shows that a single subject-level parameter captures most (85.1%) of the variation in valuations that can be explained by non-standard belief updating. Once we know a subject’s general responsiveness to information, a subject’s specific ex post beliefs contribute little explanatory power. Notably, the R^2 in both column (1) and (2) are more than double the R^2 yielded by regressing $\Delta v_{I,i}$ on all the demographic variables from our post-experiment questionnaire (which is 8.8%). We refer interested readers to Section 6 and Appendix A. For completeness, Column 3 reports the estimates of model (8) when β_2 is set to 0.

$\Delta v_I(\hat{\alpha}_i)$ performs well not just as a predictor, but as a prediction: The slope parameter in Column 2 is not significantly different from 1, and the intercept term is only slightly (but significantly) different from 0. $\Delta v_I(\hat{\alpha}_i)$ is a close-to-unbiased prediction of behavior in the Information Valuation Task, with a systematic error of

51Since we use estimates of α_i as explanatory variables, we bootstrap the standard errors. We use the following semiparametric procedure: For each subject we first draw a responsiveness parameter α_i according to the distribution of his estimate of this parameter. We then select a bootstrap sample and perform the estimations. We draw a total of 1000 bootstrap samples.

52The difference between these R^2 values is significant at all conventional levels. (Testing that the R^2 coefficient of the model in column 1 is significantly larger than in the model in column 2 is equivalent to testing that the coefficient on $\Delta v_{I,i}^{pred}$ is zero in the model in column 1, see Greene (2008), chapter 5.)

53We show in appendix B.4 that this is not driven by a particular set of information structures.

54Notably, the R-squared in this instance is lower than that of the constrained model. This suggests that the constrained model exploits underlying structure in the data - the stability of behavior across choice problems in the same task - to produce better estimates.
only 2.3 percentage points.

It bears emphasis that the $\Delta v_I(\hat{\alpha}_i)$ variables are out-of-sample predictions into a distinct choice problem. The substantial explanatory power of these predictions in the Information Valuation Task obtains even though they are generated without using data from that task.\footnote{Moreover, the R^2 coefficients in table 3 are deflated by noise in the data. If we average $\Delta v_{I,i}, \Delta v_{I,i}^{pred}$, and $\Delta v_{I,i}^{imp}$ across information structures, we obtain R^2 coefficients of 40.7, 37.0, and 40.9 \% in the regressions corresponding to columns 1 - 3 of table 3 respectively.}

To test that our results are not driven by outliers, we drop the 20% of subjects with the most extreme estimated parameters of responsiveness to information. Columns 4 - 6 display the results. On this sub-sample, responsiveness to information can explain 76.8\% of the variation in valuations that can be explained by non-standard belief updating.\footnote{Again, we compare the R^2 of a regression that uses only responsiveness to explain valuation behavior (Column 5) to the R^2 of a regression that uses both responsiveness and beliefs data (Column 4).} The parameter estimates on $\Delta v_I(\hat{\alpha}_i)$ nearly double. This might be because our methodology underestimates the true across-subject variability in responsiveness to information.\footnote{Alternatively, it might arise as an artifact of our trimming procedure. By trimming the extreme subjects, we tend to retain the subjects with low α and positive estimation error, as well as the subjects with high α and negative estimation error in our sample.}

We summarize the findings of this section in the following result.

\textbf{Result 4.} Subjects are internally consistent across the Information Valuation Task and the Belief Updating Task. A one-parameter model of responsiveness to information captures about 80\% of the variation in valuations that can be explained by non-Bayesian belief updating.

5.4 Out-of-sample test: The Gradual Information Task

To reinforce our case that responsiveness to information is a consistent individual trait, our experiment included a qualitatively distinct choice setting: the Gradual Information Task. In this task, subjects observed a sequence of informative signals
Table 3: Explaining and decomposing deviations from benchmark valuations.

<table>
<thead>
<tr>
<th>VARIABLES</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Delta v^\text{pred}_{I,i}$</td>
<td>0.296***</td>
<td>0.530***</td>
<td>0.309***</td>
<td>0.448***</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.070)</td>
<td>(0.094)</td>
<td>(0.084)</td>
<td>(0.104)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\Delta v_{I}(\hat{\alpha}_i)$</td>
<td>0.814</td>
<td>1.123</td>
<td>1.678</td>
<td>2.053**</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.200)</td>
<td>(0.204)</td>
<td>(0.497)</td>
<td>(0.532)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Constant</td>
<td>-0.027***</td>
<td>-0.023***</td>
<td>-0.030***</td>
<td>-0.0282***</td>
<td>-0.0246***</td>
<td>-0.029***</td>
</tr>
<tr>
<td></td>
<td>(0.007)</td>
<td>(0.007)</td>
<td>(0.007)</td>
<td>(0.008)</td>
<td>(0.008)</td>
<td>(0.008)</td>
</tr>
</tbody>
</table>

Observations | 919 | 919 | 919 | 729 | 729 | 729 |
R-squared | 0.228 | 0.194 | 0.157 | 0.190 | 0.146 | 0.102 |
10 percent trim | no | no | no | yes | yes | yes |

Bootstrapped standard errors in parentheses.
*** p<0.01, ** p<0.05, * p<0.1

Significance levels on the slope parameters concern the hypothesis that the coefficients are 1.

specifically, the Gradual Information Task was played in four blocks. In each block, subjects were shown a pair of boxes, each containing some combination of 20 balls (black or white). At the start of each block, the computer randomly selected a box, each with 50% probability, and showed the subject a sequence of 12 draws with replacement from the Selected Box. After each draw, subjects indicated whether they would rather (i) receive $35 if Box X was the Selected Box (ii) receive $35 if Box Y was the Selected Box, or (iii) receive $35 with probability q for some fixed success probability q. No choice would prematurely end the sequence of draws, or preclude any future choices.

Subjects were in effect being asked, given the draws they had seen so far, whether they were at least $100 \times q\%$ sure which box had been selected. Subjects faced,
in this order, the symmetric information structures (0.7, 0.7), (0.8, 0.8), (0.7, 0.7) and (0.6, 0.6), with \(q \) equal to 0.8, 0.9, 0.8 and 0.75 respectively.\(^{60}\)

This task differs from the Information Valuation Task and the Belief Updating Task in several ways.

(i) The Belief Updating Task asks subjects to report how certain they are for a given amount of information. The Gradual Information Task asks subjects to report how much information they need to attain a given level of certainty.

(ii) The previous tasks require the subject only consider one signal at a time, whereas the Gradual Information Task requires the subject to make aggregative assessments from a long sequence of signals.

(iii) In the previous tasks, subjects update a symmetric prior for each information structure, whereas in the Gradual Information Task subjects have asymmetric priors after the first signal.\(^{61}\)

(iv) The Belief Updating Task uses the strategy method to elicit choices (a cold state measure), while the Gradual Information Task displays signal draws to subjects and asks them for a decision after the fact (a hot state measure).

(v) In the Gradual Information Task subjects make ternary decisions whereas in the previous tasks they (essentially) reported a continuous variable.

Our strategy is to take the estimates of each individual’s responsiveness from the Belief Updating Task, and generate predictions of that individual’s behavior in the Gradual Information Task. We use these to assess the stability of responsiveness across different choice environments.

How would an agent perfectly described by the responsiveness model (equation [3]) behave in the Gradual Information Task? Let \(d_t \) be a variable equal to 1 if a

\(^{60}\)This implies that a Bayesian decides to bet on a box as soon as he has seen two more balls of one rather than the other color in blocks 1 to 3, and 3 more balls in block 4.

\(^{61}\)Arithmetically, having a symmetric prior simplifies Bayesian updating substantially.
black ball is drawn in period t, and -1 otherwise. Her posterior belief that the selected box is box X, $p_{t,I,i}$, is described by:

$$
\text{logit}(p_{t,I,i}) = \text{logit}(p_{t-1,I,i}) + \alpha_i d_t \log \left(\frac{P_I(“1”|1)}{P_I(“1”|0)} \right)
$$ \quad (9)

Thus, conditional on the box selected, her logit-beliefs follow a random walk with drift, where the responsiveness parameter α_i scales the rate of movement. When she faces an outside option that yields a prize with probability q_I, she first bets on a box when $\max \{p_{t,I,i}, 1 - p_{t,I,i}\} \geq q_I$. Hence, we expect individuals who are less responsive to information to require more information before they are willing to bet on a box. Figure 6 illustrates.

We measure behavior in the Gradual Information Task as follows: We ask how much more (or less) sure than q_I a Bayesian would be, when subject i first bets on a box. Suppose i first bets on a box at draw T when facing information structure I. Then we take note of the difference between the Bayesian posterior $b_{t,I,i}$ for that
box at draw T and q_I, the subject’s probability of a prize if she selects the outside option. Hence, our main variable of interest in this section is the difference of the logit Bayes posterior at first bet:

$$\Delta b_{I,i} = \text{logit}(b^T_{I,i}) - \text{logit}(q_I)$$

Each subject faced four different sequences of draws, so we have up to four observations of $\Delta b_{I,i}$ per subject. These observations are censored data, since some subjects have sequences of draws for which they never bet on a box. For 52 out of 92 subjects (56.5%), this happened for at least one sequence.

What is the relationship between our estimates of responsiveness to information and behavior in the Gradual Information Task? We first regress $\Delta b_{I,i}$ on α_i including all subjects without censored observations. The results are in column (1) of table 4. We find a highly significant slope coefficient with the expected (negative) sign and an R^2 coefficient of 9.1%. This corroborates our hypothesis that individual differences in responsiveness to information have explanatory power in the gradual information task. We do not, however, have a quantitative hypothesis concerning the relation between $\Delta b_{I,i}$ and α_i, and hence cannot readily interpret the estimated coefficients.

To obtain interpretable coefficients, we predict $\Delta b_{I,i}$ using the estimated responsiveness to information parameters and denote the resulting variable by $\Delta b_I(\hat{\alpha}_i)$. Additionally, one could consider the number of balls that a subject saw before betting on a box. However, since ball draws are conditionally i.i.d., this variable is quite noisy.

By equation (9), Bayesian logit beliefs are a random walk. We apply the logit transformation to weight equally those individuals who tend to bet on boxes too early and those who tend to bet on them too late. If we did not apply the logit transformation, then the subsequent regressions would weight overly responsive subjects more heavily than underly responsive ones. Moreover, this measure is comparable across different information structures in this task.

As in the previous analysis, the R^2 coefficient is deflated by noise in the data. If we average $\Delta b_{I,i}$ across information structures and regress on α_i, we obtain an R^2 coefficient of 18.5%.

Specifically, for each individual we first calculate the logit Bayesian belief stream given the sequence of balls the individual has observed. We multiply the Bayesian logit beliefs by α_i to obtain our prediction of individual i’s beliefs. We then define $\Delta b_I(\hat{\alpha}_i)$ like $\Delta b_{I,i}$, except that instead of computing the logit Bayes posterior at the first time the subject first bets on a box, we now compute the logit Bayes posterior at the first time the predicted beliefs are more extreme than the exogenous lottery y_I.

62 Alternatively, one could consider the number of balls that a subject saw before betting on a box. However, since ball draws are conditionally i.i.d., this variable is quite noisy.

63 By equation (9), Bayesian logit beliefs are a random walk. We apply the logit transformation to weight equally those individuals who tend to bet on boxes too early and those who tend to bet on them too late. If we did not apply the logit transformation, then the subsequent regressions would weight overly responsive subjects more heavily than underly responsive ones. Moreover, this measure is comparable across different information structures in this task.

64 As in the previous analysis, the R^2 coefficient is deflated by noise in the data. If we average $\Delta b_{I,i}$ across information structures and regress on α_i, we obtain an R^2 coefficient of 18.5%.

666 Specifically, for each individual we first calculate the logit Bayesian belief stream given the sequence of balls the individual has observed. We multiply the Bayesian logit beliefs by α_i to obtain our prediction of individual i’s beliefs. We then define $\Delta b_I(\hat{\alpha}_i)$ like $\Delta b_{I,i}$, except that instead of computing the logit Bayes posterior at the first time the subject first bets on a box, we now compute the logit Bayes posterior at the first time the predicted beliefs are more extreme than the exogenous lottery y_I.

39
We then regress $\Delta b_{I,i}$ on $\Delta b_I(\hat{\alpha}_i)$. To account for censoring, we estimate a Tobit censored regression model. The censoring level for subject i and information structure I is the most extreme difference between the logit Bayes posterior and logit(q_I) that individual i has faced in block I. We estimate this model using maximum likelihood.

We continue to assess goodness-of-fit as the fraction of variance in the dependent variable that is explained by the dependent variable. The pseudo-R^2 measure by McKelvey and Zavoina (1975) has this interpretation:

$$R^2_{MZ} = \frac{\text{var}(\Delta b_{I,i})}{\text{var}(\Delta b_{I,i}) + \text{var}(\epsilon)}.$$

Columns (2) and (3) in Table 4 report the results. Column (2) uses all subjects, whereas column (3) drops the 20% of subjects with the most extreme α_i.

The positive constants in columns (2) and (3) corroborate previous findings (Peterson and Beach (1967)) that subjects update more conservatively when aggregating sequences of signals than when making single-signal inferences.

On both samples our estimates of responsiveness to information are highly signif-

<table>
<thead>
<tr>
<th>VARIABLES</th>
<th>(1) $\Delta b_{I,i}$</th>
<th>(2) $\Delta b_{I,i}$</th>
<th>(3) $\Delta b_{I,i}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\hat{\alpha}_i$</td>
<td>-1.46** (0.600)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\Delta b_I(\hat{\alpha}_i)$</td>
<td>1.067*** (0.460)</td>
<td>6.088*** (1.731)</td>
<td></td>
</tr>
<tr>
<td>Constant</td>
<td>1.513** (0.631)</td>
<td>1.930*** (0.436)</td>
<td>0.662 (0.651)</td>
</tr>
<tr>
<td>Method</td>
<td>OLS</td>
<td>Tobit</td>
<td>Tobit</td>
</tr>
<tr>
<td>Observations</td>
<td>152</td>
<td>368</td>
<td>292</td>
</tr>
<tr>
<td>10-percent trim</td>
<td>no</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>$R^2 /$ pseudo-R^2</td>
<td>0.091</td>
<td>0.065</td>
<td>0.076</td>
</tr>
</tbody>
</table>

Bootstrapped standard errors in parentheses.

*** $p<0.01$, ** $p<0.05$, * $p<0.1$

Table 4: Predicting behavior in the gradual information task. Model (1) excludes all subjects with a censored observation. Model (2) includes all subjects and observations. Model (3) excludes the subjects with parameters α_i more extreme than the 10th or 90th percentile.

67 In our context, the McKelvey and Zavoina (1975) R^2 is defined by $R^2_{MZ} = \frac{\text{var}(\Delta b_{I,i})}{\text{var}(\Delta b_{I,i}) + \text{var}(\epsilon)}$.
icant predictors of behavior in the Gradual Information Task \((p < .002)\), although the low pseudo-\(R^2\) values indicate the presence of substantial noise. The coefficients have the expected sign: More responsive individuals require less information to reach a given level of certainty. The slope parameter is larger in column (3) than in column (2). This may be an artifact of the trimming procedure\(^{68}\) or may indicate that a given increase in responsiveness, as estimated in the Belief Updating Task, leads to a more than proportionate change in behavior in the Gradual Information Task. This would be expected if individuals are more affected by their behavioral tendencies in choice contexts where Bayesian updating is mathematically difficult.

In light of the many differences between the Belief Updating Task and the Gradual Information Task, the significant relationship between behavior in these tasks provides some additional evidence that responsiveness to information is a persistent individual trait across distinct choice environments.

Result 5. Responsiveness to information, as estimated in the Belief Updating Task, is significantly correlated with behavior in the Gradual Information task. More responsive agents require less information before they are willing to bet on the state of the world.

6 Discussion

Correlates to subject behavior One might be concerned that the heterogeneity we document is just due to variation in mathematical or statistical skill. Alternatively, the cross-task correlations in behavior may be due to some omitted variable that affects behavior in all three tasks. To address these concerns, our post-experiment questionnaire asked questions about demographic and psychological characteristics.

Most importantly, subjects who report knowledge of Bayes’ Law are no closer to the theoretical benchmarks and do not have significantly different parameters of re-

\(^{68}\)See footnote \(^{57}\)
sponsiveness to information. Subjects’ choice of college major and performance in the Cognitive Reflection Test are equally unable to explain responsiveness to information or deviations from the theoretical benchmarks. This suggests that the inter-subject variation in our experiment identifies behavioral traits, and is not simply due to variations in calculative ability.

We find no significant demographic or psychological correlates of responsiveness to information. We also test how well demographic and psychological variables explain behavior in the Information Valuation Task. Regressing $\Delta v_{I,i}$ on all psychological and demographic variables we elicited yields an R^2 coefficient of 8.8%. Including $\Delta v_{I,i}(\hat{\alpha}_i)$ substantially and significantly increases R^2 to 25.16%. Hence, responsiveness to information has explanatory power above and beyond demographic and psychological characteristics.

A detailed analysis is presented in Appendix A.

Responsiveness to information and quantity of information demanded We have investigated subjects’ willingness to pay for a single signal, and related this to responsiveness. We have not investigated how many signals subjects would pay to see, if each observation came at a price. We omitted this because the comparative statics concerning responsiveness and quantity demanded are ambiguous. On one hand, for a given prior, more responsive agents have a higher marginal value of information. On the other hand, more responsive agents’ beliefs are quicker to attain extreme beliefs, and agents with extreme beliefs have a lower marginal value of information. Hence, the effect of a change in responsiveness on the quantity of information demanded could be positive or negative.

Comparison to heterogeneous risk aversion Heterogeneous responsiveness to information is not observationally equivalent to heterogeneous risk aversion. Our experiment is one proof of this, since our results cannot be explained by classical risk aversion.
To take a more natural example, heterogeneous responsiveness yields different comparative statics for information purchasing. Consider an agent choosing between a safe option and a risky option, who could purchase information that might affect the optimal decision. If, in the absence of information, the agent would choose the risky option, then his willingness to pay for information is *increasing* in risk aversion. If, in the absence of information, the agent would choose the safe option, then his willingness to pay for information is *decreasing* in risk aversion. By contrast, in both cases, his willingness to pay for information is *increasing* in responsiveness. Appendix C formalizes this argument.

7 Concluding Remarks

Economists study many situations where agents learn about their environment by acquiring costly stochastic information. It is therefore important to understand information demand behavior, and its relationship to belief updating. In this article, we examine information demand behavior and belief updating across a range of choice contexts, using a novel experiment design.

In our experiment, we identify two biases of the population-level demand for information. First, subjects over-value less informative information structures and under-value more informative information structures. Second, they value boundary information structures disproportionately highly.

These two biases do not persist when we condition on subjects’ elicited beliefs, rather than the objective Bayesian posteriors. This suggests that these biases are the result of non-standard belief updating procedures, rather than non-standard valuations of information structures.

On the individual level, we find that subjects deviate from the theoretical predictions in internally consistent ways. We show that this consistency is explained by responsiveness to information, an individual-specific parameter that connects behav-
ior across the parts in our experiment. A simple model of responsiveness explains 80% of the variation in information demand that is due to belief updating. The out-of-sample predictions across different choice problems provide initial evidence that responsiveness is a stable individual trait. Moreover, this trait provides substantial explanatory power that is distinct from measures of mathematical aptitude and cognitive style. Economic models may be improved by considering this new dimension of heterogeneity.

The present study has investigated belief updating and the valuation of information in choice problems where subjects have an objective prior, receive signals with known error probabilities, and do not care about their beliefs *per se*. A key outstanding question is whether subjects behave differently when learning about personal characteristics such as intelligence, health, or beauty. Belief-dependent utility may alter the relationship between responsiveness and information demand; for instance, more responsive subjects may place a lower value on information because they foresee more extreme *ex post* beliefs. Additionally, future research may profitably investigate whether individuals exhibit consistent responsiveness to information when facing Knightian uncertainty, by presenting subjects with rich qualitative signals as from news reports or word-of-mouth.

[69] Augenblick and Rabin (2013) find data that is suggestive of this hypothesis.
References

A Correlates of Responsiveness to Information

The last stage of our experiment was a questionnaire to elicit a range of demographic and psychological measures from our subjects. We are interested in three questions: (i) is responsiveness to information, and the deviation from the Bayesian benchmark, explained by subjects’ self-reported knowledge of Bayes law, (ii) is responsiveness to information correlated with demographic or psychological measures, and (iii) for the behaviors that we explained in sections 5.2 and 5.4 using responsiveness to information, how much explanatory power do we obtain by instead using demographic and psychological variables?\(^{70}\)

In our questionnaire, subjects first completed the Cognitive Reflection Test (Fredrick (2005b), a measure of cognitive style), which we incentivized with $1 per question. We then elicited the demographic variables gender, age, race, college major, and year in college. Importantly, we also elicited whether subjects had ever taken a course in statistics or probability theory, and whether they knew Bayes’ law. Finally, we administered the substantive questions\(^{71}\) of the life-orientation-test-revised (Scheier et al. (1994)) as a measure of optimism, and we elicited agreement\(^{72}\) to a number of statements intended to capture superstition,\(^{73}\) spirituality,\(^{74}\) and political orientation.\(^{75}\) We interspersed these latter questions with the LOT-R questions and

\(^{70}\)Psychological variables were elicited for only a subset of subjects.

\(^{71}\)We did not administer the filler questions of this test.

\(^{72}\)The possible responses were “I agree a lot”, “I agree a little”, “I disagree a little”, and “I disagree a lot”.

\(^{73}\)We opted not to use the standard superstition questionnaires such as Tobacyk and Milford (1983) because the statements in these tests seemed too blunt given our subject pool. Instead we elicited the level of agreement with the following three statements: “I own an object that I feel brings me good luck during exams”, “I am uncomfortable if I am assigned seat number 13 in a theatre”, and “I refrain from taking risks when I feel I am having an unlucky day”.

\(^{74}\)We elicited the level of agreement to the statements “Today, I am less spiritual than I was 10 years ago”, “My religious beliefs are roughly the same as they were when I was 12 years old”, and “Over the past ten years, I have become more spiritual”.

\(^{75}\)The questions were “In political elections, I vote (if you cannot vote in the US, please answer who you would vote for if you could)” with answers “always republican”, “usually republican”, “about equally often republican as democrat”, “usually democrat”, and “always democrat”.
We first regress our estimates of individuals’ responsiveness to information, $\hat{\alpha}_i$, and the absolute deviation from the Bayesian benchmark, $|\hat{\alpha}_i - 1|$, on subjects’ self-reported knowledge of Bayes’ law. We test whether the 40.2% (37 out of 92) subjects who self-report knowing Bayes’ law have systematically different levels of responsiveness to information. The results are in column (1) and (2) of table 5. We find no significant effect on either dependent variable.

We test for correlations between responsiveness and demographic and psychological measures with the following initial hypotheses in mind: (i) men might be more responsive to information than women (as found by Moebius et al. (2013) in an experiment on ego-relevant beliefs), (ii) more optimistic subjects might be more responsive to information, (iii) more responsive subjects might be more superstitions, (iv) subjects with more technical majors might be closer to the Bayesian benchmark. We do not have a specific hypothesis regarding religiosity.

To test these hypotheses we regress $\hat{\alpha}_i$ and $|\hat{\alpha}_i - 1|$ on these demographic measures. We classify majors into three categories, science and engineering, business and economics, and arts and humanities. The last category is chosen as baseline, and hence omitted from the regression. The variables optimism, superstition and religiosity are elicited using several statements each. We use the first principal component as a single index for each of these variables. Table 5, columns (3) and (4) report the results.

None of the demographic variables are significantly associated with responsiveness.

76 We added some of these questions only after having run the first two sessions of the experiment.

77 Not only are the effects insignificant, they are also small. Recall that the standard deviation in the estimated parameters of responsiveness to information $\hat{\alpha}_i$ is 0.266. Using responses on whether subjects have ever taken a class in statistics or probability theory instead of whether they know Bayes’ law does not change these conclusions.

78 The finding in Moebius et al. (2013) could be due to men generally being more responsive to information than women, or due to men being more responsive to information only in case of ego-relevant beliefs. Moebius et al. do not discriminate between these two hypotheses.

79 For this reason we bootstrap standard errors.

80 The number of observations is now 72 because the first two sessions of our experiment did not include the questions about superstition and religiosity.
as column (3) shows. Turning to psychological variables, we find the expected positive correlation of optimism with responsiveness. This effect, however, is not robust to excluding religiosity from the regression equation (not reported).

Reassuringly, none of the demographic and psychological variables explain subjects’ deviation from the Bayesian benchmark—all slope coefficients in column (4) are statistically insignificant and small relative to the mean of the dependent variable (0.215).

Finally, we consider the explanatory power of the demographic and psychological variables in the Information Valuation and Gradual Information Tasks. We regress \(\Delta v_{t,i} \) and \(\Delta b_{t,i} \) on these variables, paralleling the analyses in sections 5.2 and 5.4. Again, demographic and psychological variables lack significant explanatory power. The \(R^2 \)-coefficient of 8.8% of this regression does not compare favorably with the \(R^2 \)-coefficient of 19.4% we obtain using (only) responsiveness to information as an explanatory variable. \(^{82}\) Race has some explanatory power in the Gradual Information Task.

We summarize these findings in the following result.

Result 6.

(i) Self-reported knowledge of Bayes’ law explains neither subjects’ responsiveness to information nor subjects’ deviation from the Bayesian benchmark.

(ii) Demographic and psychological variables are not significantly related to subjects’ responsiveness to information or to subjects’ deviation from the Bayesian benchmark.

(iii) Demographic and psychological variables have lower explanatory power than responsiveness in the Information Valuation Task.

\(^{81}\) The estimates in column 6 are based only on the set of subjects who chose to bet on the state of the world at least once in each round of the Gradual Information Task.

\(^{82}\) See column 2 in table 3.
<table>
<thead>
<tr>
<th>VARIABLES</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$\hat{\alpha}_i$</td>
<td>$</td>
<td>\hat{\alpha}_i - 1</td>
<td>$</td>
<td>$\hat{\alpha}_i$</td>
<td>$</td>
</tr>
<tr>
<td>Knows Bayes’ law</td>
<td>0.057</td>
<td>0.013</td>
<td>0.073</td>
<td>0.066</td>
<td>-0.004</td>
<td>-0.127</td>
</tr>
<tr>
<td></td>
<td>(0.074)</td>
<td>(0.054)</td>
<td>(0.076)</td>
<td>(0.070)</td>
<td>(0.014)</td>
<td>(0.543)</td>
</tr>
<tr>
<td>Male</td>
<td>0.088</td>
<td>-0.045</td>
<td>-0.010</td>
<td>0.142</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.067)</td>
<td>(0.056)</td>
<td>(0.020)</td>
<td>(0.736)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Science or engineering major</td>
<td>-0.079</td>
<td>-0.002</td>
<td>-0.001</td>
<td>0.0236</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.069)</td>
<td>(0.059)</td>
<td>(0.021)</td>
<td>(0.985)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Business or economics major</td>
<td>-0.053</td>
<td>-0.068</td>
<td>-0.014</td>
<td>-1.218</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.100)</td>
<td>(0.086)</td>
<td>(0.029)</td>
<td>(1.152)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>African-american</td>
<td>-0.160</td>
<td>0.053</td>
<td>-0.063</td>
<td>3.087</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.188)</td>
<td>(0.177)</td>
<td>(0.073)</td>
<td>(2.020)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Asian</td>
<td>0.023</td>
<td>-0.112</td>
<td>0.021</td>
<td>2.720</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.025)</td>
<td>(0.079)</td>
<td>(0.039)</td>
<td>(1.943)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Caucasian</td>
<td>0.051</td>
<td>-0.068</td>
<td>0.043</td>
<td>2.869*</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.107)</td>
<td>(0.069)</td>
<td>(0.035)</td>
<td>(1.743)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CRT</td>
<td>0.026</td>
<td>-0.019</td>
<td>0.017</td>
<td>0.149</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.034)</td>
<td>(0.079)</td>
<td>(0.039)</td>
<td>(1.943)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LOTR</td>
<td>0.040**</td>
<td>-0.012</td>
<td>-0.002</td>
<td>0.0141</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.018)</td>
<td>(0.016)</td>
<td>(0.006)</td>
<td>(0.256)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Superstition</td>
<td>-0.007</td>
<td>0.016</td>
<td>-0.005</td>
<td>-0.0335</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.027)</td>
<td>(0.022)</td>
<td>(0.008)</td>
<td>(0.300)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Religiosity</td>
<td>0.076</td>
<td>0.018</td>
<td>-0.000</td>
<td>-0.153</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.057)</td>
<td>(0.031)</td>
<td>(0.008)</td>
<td>(0.287)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Constant</td>
<td>1.111***</td>
<td>0.247***</td>
<td>0.954***</td>
<td>0.248</td>
<td>-0.077**</td>
<td>-3.047</td>
</tr>
<tr>
<td></td>
<td>(0.087)</td>
<td>(0.062)</td>
<td>(0.171)</td>
<td>(0.264)</td>
<td>(0.036)</td>
<td>(1.949)</td>
</tr>
<tr>
<td>Session and order fixed effects</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Observations</td>
<td>92</td>
<td>92</td>
<td>72</td>
<td>72</td>
<td>719</td>
<td>120</td>
</tr>
<tr>
<td>R-squared</td>
<td>0.081</td>
<td>0.106</td>
<td>0.338</td>
<td>0.250</td>
<td>0.088</td>
<td>0.165</td>
</tr>
</tbody>
</table>

Bootstrapped standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1

Table 5: Responsiveness to information and demographic and psychological variables. The excluded category for major is humanities and social sciences. The excluded category for race is other. Models (5) and (6) do not include session and order fixed effects which would inflate R^2.
B Robustness Checks

B.1 Analysis on the full sample

In this section we redo our analysis including all subjects and all sessions (with the exception of the pilot session). Our results do not change qualitatively, but the correlations we observe are weaker. This is expected, since we now include subjects that we have previously classified as noisy. Estimated parameters of responsiveness continue to be significantly correlated with behavior in the Information Valuation Task. In the Gradual Information Task responsiveness to information retains statistical significance if we control for demographic variables.

Aggregate analysis Figure 7 suggests the findings that we have obtained in the main text hold on the full sample: less informative information structures are overvalued, more informative information structures are undervalued, information structures are undervalued on average, there are slight boundary effects, and there is no discernible evidence of any effects of asymmetry. Formal analysis reported in table 6 confirms this.

We now perform the analysis of section 4.1 on the entire sample. We again find
Table 6: Aggregate valuations of information structures.

<table>
<thead>
<tr>
<th>Info Structures</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
<th>(7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dependent Var</td>
<td>$v_{I,i}$</td>
<td>$v_{I,i}$</td>
<td>$v_{I,i}$</td>
<td>$v_{I,i}$</td>
<td>$v_{I,i}$</td>
<td>$v_{I,i}$</td>
<td>$v_{I,i}$</td>
</tr>
<tr>
<td>$v_{I,\text{theor}}$</td>
<td>.594***</td>
<td>.616***</td>
<td>.618***</td>
<td>.655***</td>
<td>.491***</td>
<td>.677***</td>
<td>.603***</td>
</tr>
<tr>
<td></td>
<td>(.0450)</td>
<td>(.0439)</td>
<td>(.0437)</td>
<td>(.0406)</td>
<td>(.0427)</td>
<td>(.0386)</td>
<td>(.0427)</td>
</tr>
<tr>
<td>Asymmetry</td>
<td>-.0475</td>
<td>(.0295)</td>
<td>-.0237</td>
<td>(.0260)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Boundary</td>
<td>.0273***</td>
<td>(.00843)</td>
<td>.0342***</td>
<td>(.00968)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Constant</td>
<td>.268***</td>
<td>.248***</td>
<td>.249***</td>
<td>.231***</td>
<td>.271***</td>
<td>.208***</td>
<td>.260***</td>
</tr>
<tr>
<td></td>
<td>(.0338)</td>
<td>(.0326)</td>
<td>(.0327)</td>
<td>(.0323)</td>
<td>(.0330)</td>
<td>(.0305)</td>
<td>(.0326)</td>
</tr>
<tr>
<td>Observations</td>
<td>571</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>1429</td>
<td>1429</td>
</tr>
<tr>
<td>R-squared</td>
<td>.186</td>
<td>.140</td>
<td>.141</td>
<td>.202</td>
<td>.207</td>
<td>.172</td>
<td>.177</td>
</tr>
</tbody>
</table>

Standard errors in parentheses. Clustered by subjects.
Reported significance levels for $v_{I,\text{theor}}$ concern the hypothesis that this coefficient is 1.

*** $p<0.01$, ** $p<0.05$, * $p<0.1$

Individual analysis Including all subjects in the analysis does not change much even for the statistically more demanding individual level analysis of section 5.2. Surprisingly, including all subjects leaves the relative importance of responsiveness to information almost unchanged: the R^2 coefficient in equation (2) as a fraction of the R^2 coefficient in equation (3) is 86.4 % (the corresponding ratio on the sample used
<table>
<thead>
<tr>
<th>Method</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dependent Var</td>
<td>$v_{I,i}$</td>
<td>$v_{I,i}$</td>
<td>$v_{I,i}^{pred}$</td>
<td>$v_{I,i}^{pred}$</td>
<td>$v_{I,i}$</td>
<td>$v_{I,i}$</td>
</tr>
<tr>
<td>$v_{I,i}^{pred}$</td>
<td>.518***</td>
<td>.471***</td>
<td></td>
<td>.878**</td>
<td></td>
<td>.984</td>
</tr>
<tr>
<td></td>
<td>(.0666)</td>
<td>(.0775)</td>
<td></td>
<td>(.0507)</td>
<td></td>
<td>(.0730)</td>
</tr>
<tr>
<td>$v_{I,i}^{theor}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Asymmetry</td>
<td>-.0719</td>
<td>-.0108</td>
<td></td>
<td>-.0131</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(.0279)</td>
<td>(.0209)</td>
<td></td>
<td>(.0335)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Boundary</td>
<td>.0443***</td>
<td>.0687***</td>
<td></td>
<td>-.0336**</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(.0134)</td>
<td>(.00770)</td>
<td></td>
<td>(.0141)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Constant</td>
<td>.341***</td>
<td>.373***</td>
<td>.170***</td>
<td>.276***</td>
<td>.0589</td>
<td>-.0118</td>
</tr>
<tr>
<td></td>
<td>(.0549)</td>
<td>(.0612)</td>
<td>(.0213)</td>
<td>(.0229)</td>
<td>(.0389)</td>
<td>(.0540)</td>
</tr>
<tr>
<td>Instrument</td>
<td></td>
<td>$v_{I,i}^{theor}$</td>
<td>$v_{I,i}^{theor}$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Observations</td>
<td>1429</td>
<td>1429</td>
<td>1429</td>
<td>1429</td>
<td>1429</td>
<td>1429</td>
</tr>
<tr>
<td>R-squared</td>
<td>.213</td>
<td>.222</td>
<td>.280</td>
<td>.316</td>
<td>.110</td>
<td>.0524</td>
</tr>
</tbody>
</table>

Standard errors in parentheses. Clustered by subjects. Reported significance levels for $v_{I,i}^{pred}$ concern the hypothesis that this coefficient is 1. *** p<0.01, ** p<0.05, * p<0.1

Table 7: Relationship between beliefs and valuations.
Table 8: Explaining and decomposing deviations from benchmark valuations.

This suggests that responsiveness to information is a robust predictor of behavior, particularly in cases where behavior is noisy.

Including all subjects increases the noise to an overwhelming level in the Gradual Information Task, however. While we still find the expected signs of the coefficients, these are no longer significant, and the R^2 coefficient drop to negligible levels. We recover significance of responsiveness to information on the entire sample when we control for covariates. Table 5, column (6), indicates that race is a strong predictor of behavior in the Gradual Information Task. We include this variable in the regressions corresponding to column (1) of table 9 and find responsiveness to information to be a highly significant predictor of behavior.

83 A slight increase occurs for equations (5) and (6) where the corresponding ratio changes from 76.4% to 87.0%.
Table 9: Predicting behavior in the gradual information task. Model (1) excludes all subjects with a censored observation. Model (2) includes all subjects and observations. Model (3) excludes the subjects with parameters α_i more extreme than the 10th or 90th percentile. Model (4) is model (1) with race-dummies as control variables.
B.2 Truncation in the aggregate analysis

Our result that subjects overvalue the less informative information structures and undervalue the more informative ones might be a statistical artifact: First, it is impossible to enter valuations that exceed one, and second, even for subjects who do not know how to value a particular information structure, it might be obvious that stating valuations short of 0.5 is suboptimal. Consequently, large upward errors are possible for less informative information structures, but not for more informative ones, and the opposite holds for large downward errors.

We show that our result is not a statistical artifact, as follows. If for information structure I, the maximal upwards deviation from the theoretical valuation is M, then we set all valuations with $v_{I,i} < v_{I}^{\text{theor}} - M$ equal to $v_{I}^{\text{theor}} - M$. Similarly, if the maximal downwards deviation from the theoretical valuation is m, then we set all valuations with $v_{I,i} > v_{I}^{\text{theor}} + m$ equal to $v_{I}^{\text{theor}} + m$. We perform the analysis of section 4 on this data. Table 10 displays the results.

Note that if the overweighting/underweighting effect is purely a statistical artifact, then the coefficient on v_{I}^{theor} will be equal to 1 in this procedure. On the other hand, if the true coefficient on v_{I}^{theor} is less than 1, then this procedure will bias the coefficient estimates upwards.

We find that the overweighting / underweighting effect is reduced, but remains substantial and highly statistically significant. Our conclusions regarding the boundary and asymmetry effects are not substantially changed.

B.3 Framing effects and extremeness-avoidance

There are a variety of reasons that, in principle, could explain the consistency of responsiveness to information. On the one hand, some people might be more prone than others to avoid ‘extreme’ lines in the multiple price list, or they might have a preference for playing the exogenous lottery to being paid according to the evaluation option in each multiple price list. These effects are present to equal extents in both
Table 10: Results of section 4 correcting for truncation.

<table>
<thead>
<tr>
<th>Info Structures</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
<th>(7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dependent Var</td>
<td>$v_{I,i}$</td>
<td>$v_{I,i}$</td>
<td>$v_{I,i}$</td>
<td>$v_{I,i}$</td>
<td>$v_{I,i}$</td>
<td>$v_{I,i}$</td>
<td>$v_{I,i}$</td>
</tr>
<tr>
<td>v_{I}^{theor}</td>
<td>.844***</td>
<td>.840***</td>
<td>.842***</td>
<td>.879***</td>
<td>.840***</td>
<td>.887***</td>
<td>.829***</td>
</tr>
<tr>
<td></td>
<td>(.0249)</td>
<td>(.0264)</td>
<td>(.0266)</td>
<td>(.0223)</td>
<td>(.0249)</td>
<td>(.0239)</td>
<td>(.0248)</td>
</tr>
<tr>
<td>Asymmetry</td>
<td>-.0448*</td>
<td>(.0256)</td>
<td></td>
<td></td>
<td>-.0256</td>
<td>(.0230)</td>
<td></td>
</tr>
<tr>
<td>Boundary</td>
<td>.0167**</td>
<td></td>
<td>.0273***</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(.00637)</td>
<td></td>
<td>(.00668)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Constant</td>
<td>.107***</td>
<td>.105***</td>
<td>.107***</td>
<td>.0864***</td>
<td>.111***</td>
<td>.0745***</td>
<td>.115***</td>
</tr>
<tr>
<td></td>
<td>(.0213)</td>
<td>(.0227)</td>
<td>(.0225)</td>
<td>(.0211)</td>
<td>(.0222)</td>
<td>(.0229)</td>
<td>(.0219)</td>
</tr>
<tr>
<td>Observations</td>
<td>367</td>
<td>643</td>
<td>643</td>
<td>643</td>
<td>643</td>
<td>919</td>
<td>919</td>
</tr>
<tr>
<td>R-squared</td>
<td>.597</td>
<td>.448</td>
<td>.449</td>
<td>.608</td>
<td>.612</td>
<td>.511</td>
<td>.516</td>
</tr>
</tbody>
</table>

Standard errors in parentheses. Clustered by subjects.
Reported significance levels for v_{I}^{theor} concern the hypothesis that this coefficient is 1.
*** p<0.01, ** p<0.05, * p<0.1

Table 10: Results of section 4 correcting for truncation.

the belief updating task and the probability assessment task. On the other hand, subjects might be influenced by the different numbers of black and white balls they were presented with in part 1.

Our conclusions are robust to controlling for these effects. We perform the following procedure. We first regress $\Delta v_{I,i}$ on all $\Delta P_{I,i}(\sigma)$, and on the sequence of balls drawn in part 1. We then obtain the residuals from these regressions. We do the same with the belief updating data. We calculate the Cronbach alpha coefficients of the residuals to demonstrate consistency within parts of the experiment. To demonstrate the explanatory power of responsiveness to information across parts, we regress subjects’ mean residuals of the valuation data on their mean residuals from the belief updating data. We do not apply such a procedure to the Gradual Information Task, since there exists no obvious confound that would be common to both the Belief Updating Task and the Gradual Information Task.
Formally, the first stage regression is:

\[\Delta x_{I,i} = \beta_{0,i} + \sum_{I' = 1}^{10} \left[\beta_{I',I}^x \Delta P_{i,I'}("1") + \gamma_{I',I}^x \Delta P_{i,I'}("0") \right] + \sum_{k=1}^{6} c_i^k + \epsilon_i^x \]

where \(c_i^k \) is the color of the ball that subject \(i \) saw in round \(k \) of part 1, the \(\epsilon_i^x \) are assumed to be i.i.d. with mean zero and \(x \in \{v, P(1|"1"), P(0|"0")\} \) is one of our behavioral variables of interest. We include session and order fixed-effects, and denote the estimated residuals by \(\hat{\epsilon}_i^x \).

This model is the most general model with the properties that (i) the function relating behavior in the Probability Assessment Task to behavior in a given other part of the experiment is the same for all subjects and (ii) this function is linear. In particular, it allows for each \(\delta_i^x \) to depend differentially on all of the \(\delta_{i,I'}^x \). Thus it accommodates explanations such as people placing a constant premium (heterogenous across individuals) on the exogenous lottery relative to the evaluation option or ideas such as some people being more prone to avoid extreme lines in the multiple price lists.

The Cronbach alpha coefficients of the residuals \(\hat{\epsilon}_i^v \), \(\hat{\epsilon}_i^{P(1|"1")} \), and \(\hat{\epsilon}_i^{P(0|"0")} \) are 0.808, 0.814 and 0.706, respectively. These are slightly lower than the coefficients obtained on the original data, but (with the exception of \(\hat{\epsilon}_i^{P(0|"0")} \)) still compare favorably with the standard benchmark of 0.8. Hence we still find consistent heterogeneity in behavior within parts of our experiment.

To assess consistency across parts of the experiment, we define \(\eta_i^v = \frac{1}{I} \sum_{I \in S \cup B} \hat{\epsilon}_i^v \) and \(\eta_i^p = \frac{1}{I} \sum_{I \in S \cup B} \hat{\epsilon}_i^{P(1|"1")} + \hat{\epsilon}_i^{P(0|"0")} \). We then regress \(\eta_i^v \) on \(\eta_i^p \). We estimate a slope coefficient of 0.134*** (s.e. 0.023) and intercept coefficient of 0.000 (s.e. 0.005). The \(R^2 \) coefficient of this regression is 28.2 %.

\(^{85}\)We randomly decided whether to elicit the probabilities of white or black balls. Hence either \(\Delta P_{i,I'}("1") = 0 \) or \(\Delta P_{i,I'}("0") = 0 \) for each observation \((i, I) \). We allow the parameters in the first stage regression to differ depending on whether we elicited the probability of a black ball or the probability of a white ball to allow for the greatest generality.

\(^{86}\)We exclude the boundary information structures.
Hence, even controlling for the effects mentioned above, deviations from the Bayesian benchmark in the Belief Updating Task are still highly significant predictors of deviations from the Bayesian benchmark in the Information Valuation Task.

B.4 Responsiveness and subsets of information structures

In section 5.3 we found that our constrained predictor explains 85.1% of the variation in the deviations from Bayesian valuations that can maximally be explained using beliefs. In this section we check that this result is not driven by a small number of information structures.

We consider the variation in the deviations from Bayesian valuations that can maximally be explained using beliefs separately for all the symmetric, asymmetric, and boundary information structures, and their respective complements. We also consider the subsets consisting of the two, four, and eight information structures that are most extreme in terms of informativeness.

Table 11 shows that for just two of these subsets the fraction of variance explained by the unconstrained predictor drops below 70%. In both of these cases the subset of information is small, and involves a boundary information structure.

We conclude that our finding in section 5.3 is not driven by a small number of information structures.

C Responsiveness to Information Compared to Risk Aversion

Suppose there is a binary state of the world $s \in \{0, 1\}$ with a known prior $p = P(s = 1)$. An agent can take either a risk free act C that provides a state independent payoff c, or he can opt for a risky act R which has downside d in state $s = 0$ and upside u.

\footnote{We do not consider the subset of the six most extreme information structures, as this would require us to break ties for equally informative information structures.}
Table 11: Fraction of explainable variance in individual biases in valuations that can be explained using responsiveness alone, on subsets of information structures. $R^2_{\text{constrained}}$ is the R^2 of a regression of $\Delta v_{I,i}$ on the constrained predictor. R^2_{both} is the R^2 of a regression of $\Delta v_{I,i}$ on both the constrained and the unconstrained predictor.

<table>
<thead>
<tr>
<th>Subset</th>
<th>$R^2_{\text{constrained}}/R^2_{\text{both}}$</th>
<th>Subset</th>
<th>$R^2_{\text{constrained}}/R^2_{\text{both}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>76.7%</td>
<td>A, B</td>
<td>90.3%</td>
</tr>
<tr>
<td>A</td>
<td>99.0%</td>
<td>S, B</td>
<td>79.4%</td>
</tr>
<tr>
<td>B</td>
<td>65.4%</td>
<td>S, A</td>
<td>88.5%</td>
</tr>
<tr>
<td>S_1, B_3</td>
<td>45.1%</td>
<td>S_2, S_3, B_1, B_2, A</td>
<td>95.9%</td>
</tr>
<tr>
<td>S_1, S_2, B_2, B_3</td>
<td>70.3 %</td>
<td>S_2, S_3, B_1, B_2, A</td>
<td>94.9%</td>
</tr>
<tr>
<td>$S_1, S_2, S_4, A, B_2, B_3$</td>
<td>82.4 %</td>
<td>S_3, B_1</td>
<td>92.6%</td>
</tr>
</tbody>
</table>

in state $s = 1$, where $d < c < u$, as depicted in the following table.

<table>
<thead>
<tr>
<th>Act</th>
<th>$s = 0$</th>
<th>$s = 1$</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>c</td>
<td>c</td>
</tr>
<tr>
<td>R</td>
<td>d</td>
<td>u</td>
</tr>
</tbody>
</table>

Before making a decision, the agent has the opportunity to acquire a costly informative signal “$\sigma \in \{\"0\", \"1\"\}$” about the state of the world. We are interested in the comparative statics of the agent’s willingness to pay for the information with respect to (i) his responsiveness to information and (ii) his risk aversion.

It is clear that the agent’s willingness to pay for information is increasing in his responsiveness to information, regardless of which act he would choose in the absence of information. This is because an agent who is more responsive to information experiences a greater reduction in subjective uncertainty upon observing any signal.

Importantly, however, the comparative statics with respect to risk aversion depend on what action the agent would take in the absence of information.

First, suppose that the parameters of the problem are such that in the absence of information the agent chooses the risky act R. In this case, a signal realization either increases the subjective probability for $s = 1$, in which case the agent also decides for the risky act after observing the signal. Or it decreases the subjective probability for $s = 1$, in which case the agent might opt for the riskless act C instead. Hence,
information can prevent the agent from deciding for R when doing so would likely pay the downside d. An increase in risk aversion decreases the attractiveness of R for any posterior about s, but leaves the attractiveness of C unchanged. Therefore, a more risk averse agent who, in the absence of information, opts for the risky option has more to gain from information. Hence, his willingness to pay for information increases with risk aversion.

Second, suppose that the parameters of the problem are such that in absence of information, the agent would instead optimally choose the riskless act C. Now, if the signal realization decreases the subjective probability that $s = 1$, then the agent still opts for the riskless act C. If it increases the subjective probability that $s = 1$, however, the agent might choose the risky act R instead. Hence, information can help the agent to take the risk R when doing so is likely to pay the upside u. Now, an increase in risk aversion decreases the attractiveness of the risky option R relative to the riskless option C. Hence, a more risk averse agent has less to gain from information. Consequently, if in the absence of information the agent opts for the riskless option, an increase in risk aversion decreases willingness to pay for information.

88 Conditional on this signal, $EU(R) < EU(C)$.
89 Conditional on this signal, $EU(R) > EU(C)$.
90 We can use this simple model to derive predictions of individual behavior across markets for information. Suppose that market A provides information for decisions in which people by default opt for the risky option, whereas market B provides information for decisions in which people usually opt for the riskless option. If people are all similarly risk averse but heterogenous in responsiveness to information, then individuals’ willingness to pay for information is positively correlated across the two markets. On the other hand, if people are all similarly responsive to information but differ in risk aversion, we expect negative correlation between individual willingness to pay across markets A and B.

65
D Experimental Instructions
This is a study of individual decision-making and behavior. Money earned will be paid to you in cash at the end of this experiment.

In addition to your $5 show up payment and your $15 completion payment, you will be paid in cash your earnings from the experiment.

This experiment proceeds in 5 parts. For each part, we will give you instructions just before that part begins. Your choices in one part of the experiment will not affect what happens in any other part. Each part proceeds in rounds. In total, there will be 40 rounds of similar length and an additional 40 rounds of shorter length. The experiment will end with a short questionnaire, for which you may earn additional money.

After you are finished with the experiment, we will draw one of the parts of the experiment at random, and one of the rounds within this part, so that each round of the experiment is similarly likely to be drawn. We will pay you in cash for the decision that you made in that round (the Payment Round), and only in that round. Hence you should make every decision as if it is the one that counts, because it might be!

Remember that this is a study of individual decision-making, which means you are not allowed to talk during the study. If you have any questions, please raise your hand and we will come and answer your questions privately.

Please do not use cell phones or other electronic devices until after the study is over. If we do find you using your cell phone or other electronic devices, the rules of the study require us to withhold your completion payment.

Often during this study, you will be shown information or asked to make decisions. After doing so, remember to click the button that says “Continue” or “Save My Decisions”. The experiment will not proceed until you click that button.
PART 1

The first part of the experiment proceeds in 6 rounds. In each round, you will play the Prediction Game (described below), for a prize of $35.

In each round there are two boxes, Box X and Box Y. Each of the boxes contains balls that are either black or white. Box X contains 10 balls. Box Y contains 20 balls. For example, Box X could contain 7 black balls and 3 white balls, and Box Y could contain 14 white balls and 6 black balls. The composition of the boxes may change from round to round.

THE PREDICTION GAME

At the beginning of the Prediction Game, the computer will select either Box X or Box Y by tossing a fair coin. Thus, Box X is selected with chance 50%, and Box Y is selected with chance 50%. The box that has been selected is called the Selected Box. We will not tell you which box has been selected by the computer.

The computer will then draw a ball randomly from the Selected Box, and show that ball to you. Your task is to predict whether the Selected Box is Box X or Box Y. If you predict correctly, you will receive $35. If you predict incorrectly, you will receive $0.
The computer randomly drew either box X or box Y. It then randomly drew one of the balls out of the Selected Box. The color of this ball is:

For instance, suppose you predict that the Selected Box is Box X. Then you get $35 if the Selected Box is in fact Box X.

We will not tell you whether your prediction was correct until the end of the experiment. The flow chart on the next page illustrates what happens in the Prediction Game.

This may seem simple, but we just want you to get used to playing this game.
The Prediction Game

See contents of Box X and Box Y

Computer flips a fair coin.

Box X is selected
Computer draws a ball at random from Box X

Box Y is selected
Computer draws a ball at random from Box Y

Computer shows you the ball.

You tell us your prediction of the Selected Box. ("Box X" or "Box Y")

Receive $35 if your prediction is correct
PART 2

This part of the experiment proceeds in 10 rounds. In each round, we will show you two boxes, Box X and Box Y. We then ask whether you would rather play the Prediction Game with those boxes, for a prize of $35, or instead have a stated chance of winning of $35.

After inspecting the boxes, you will make a choice by filling in a list such as this:

play the prediction game			get $35 with chance 100%
play the prediction game			get $35 with chance 97%
play the prediction game			get $35 with chance 84%
play the prediction game			get $35 with chance 81%
play the prediction game			get $35 with chance 88%
play the prediction game			get $35 with chance 85%
play the prediction game			get $35 with chance 82%
play the prediction game			get $35 with chance 79%
play the prediction game			get $35 with chance 76%
play the prediction game			get $35 with chance 73%
play the prediction game			get $35 with chance 70%
play the prediction game			get $35 with chance 67%
play the prediction game			get $35 with chance 64%
play the prediction game			get $35 with chance 61%
play the prediction game			get $35 with chance 58%
play the prediction game			get $35 with chance 55%
play the prediction game			get $35 with chance 52%
play the prediction game			get $35 with chance 49%
play the prediction game			get $35 with chance 46%
play the prediction game			get $35 with chance 43%
play the prediction game			get $35 with chance 40%
play the prediction game			get $35 with chance 37%
play the prediction game			get $35 with chance 34%
play the prediction game			get $35 with chance 31%
play the prediction game			get $35 with chance 28%
play the prediction game			get $35 with chance 25%
play the prediction game			get $35 with chance 22%
play the prediction game			get $35 with chance 19%
play the prediction game			get $35 with chance 16%
play the prediction game			get $35 with chance 13%
play the prediction game			get $35 with chance 10%
play the prediction game			get $35 with chance 7%
play the prediction game			get $35 with chance 4%
play the prediction game			get $35 with chance 1%

At the end of the experiment, the computer will select one of the lines on this list at random. That decision will be the one that counts.

All numbers that you see in this part of the instructions are chosen to illustrate the payment procedure. These numbers will not be relevant once we start this part of the experiment.
For instance, suppose that you filled in the list like this:

<table>
<thead>
<tr>
<th>play the prediction game</th>
<th>get $35 with chance 100%</th>
</tr>
</thead>
<tbody>
<tr>
<td>play the prediction game</td>
<td>get $35 with chance 97%</td>
</tr>
<tr>
<td>play the prediction game</td>
<td>get $35 with chance 94%</td>
</tr>
<tr>
<td>play the prediction game</td>
<td>get $35 with chance 91%</td>
</tr>
<tr>
<td>play the prediction game</td>
<td>get $35 with chance 88%</td>
</tr>
<tr>
<td>play the prediction game</td>
<td>get $35 with chance 85%</td>
</tr>
<tr>
<td>play the prediction game</td>
<td>get $35 with chance 82%</td>
</tr>
<tr>
<td>play the prediction game</td>
<td>get $35 with chance 79%</td>
</tr>
<tr>
<td>play the prediction game</td>
<td>get $35 with chance 76%</td>
</tr>
<tr>
<td>play the prediction game</td>
<td>get $35 with chance 73%</td>
</tr>
<tr>
<td>play the prediction game</td>
<td>get $35 with chance 70%</td>
</tr>
<tr>
<td>play the prediction game</td>
<td>get $35 with chance 67%</td>
</tr>
<tr>
<td>play the prediction game</td>
<td>get $35 with chance 64%</td>
</tr>
<tr>
<td>play the prediction game</td>
<td>get $35 with chance 61%</td>
</tr>
<tr>
<td>play the prediction game</td>
<td>get $35 with chance 58%</td>
</tr>
<tr>
<td>play the prediction game</td>
<td>get $35 with chance 55%</td>
</tr>
<tr>
<td>play the prediction game</td>
<td>get $35 with chance 52%</td>
</tr>
<tr>
<td>play the prediction game</td>
<td>get $35 with chance 49%</td>
</tr>
<tr>
<td>play the prediction game</td>
<td>get $35 with chance 46%</td>
</tr>
<tr>
<td>play the prediction game</td>
<td>get $35 with chance 43%</td>
</tr>
<tr>
<td>play the prediction game</td>
<td>get $35 with chance 40%</td>
</tr>
<tr>
<td>play the prediction game</td>
<td>get $35 with chance 37%</td>
</tr>
<tr>
<td>play the prediction game</td>
<td>get $35 with chance 34%</td>
</tr>
<tr>
<td>play the prediction game</td>
<td>get $35 with chance 31%</td>
</tr>
<tr>
<td>play the prediction game</td>
<td>get $35 with chance 28%</td>
</tr>
<tr>
<td>play the prediction game</td>
<td>get $35 with chance 25%</td>
</tr>
<tr>
<td>play the prediction game</td>
<td>get $35 with chance 22%</td>
</tr>
<tr>
<td>play the prediction game</td>
<td>get $35 with chance 19%</td>
</tr>
<tr>
<td>play the prediction game</td>
<td>get $35 with chance 16%</td>
</tr>
<tr>
<td>play the prediction game</td>
<td>get $35 with chance 13%</td>
</tr>
<tr>
<td>play the prediction game</td>
<td>get $35 with chance 10%</td>
</tr>
<tr>
<td>play the prediction game</td>
<td>get $35 with chance 7%</td>
</tr>
<tr>
<td>play the prediction game</td>
<td>get $35 with chance 4%</td>
</tr>
<tr>
<td>play the prediction game</td>
<td>get $35 with chance 1%</td>
</tr>
</tbody>
</table>

Suppose that the computer selects the third line from the top. On this line, you ticked the option on the right. Hence you will receive $35 with chance 94 %, and $0 otherwise.

Suppose instead that the computer selects the fifth line from the top. On this line, you ticked the option on the left. Hence, you will play the prediction game.

Your task is to consider, for each line, whether you would rather play the Prediction Game with the boxes offered, or instead receive $35 with the chance on the right.

If you prefer playing the prediction game to getting $35 with chance 12%, for instance, then you will also prefer playing the prediction game to getting $35 with any lower chance. Similarly, if you prefer getting $35 with chance 13% to playing the prediction game, then you will also prefer getting $35 with any chance higher than 13% to playing the prediction game. For your convenience, once you tick a given option, the computer will fill in the lines above and below in this way.
Our payment procedure is designed so that it is in your best interest to choose on each line the option you genuinely prefer.

At the end of the experiment, what happens if a round from this part is the one selected as the Payment Round? The computer will select a line from your choice list for that round. If, on that line, you chose to play the Prediction Game for a $35 prize, then you will play the Prediction Game with the boxes from that round. If, on that line, you chose to have a chance of receiving $35, then you will receive $35 with the specified chance.

Specifically, you will be shown a wheel of luck. The wheel is part green and part red. The fraction of the wheel of luck that is green is exactly the specified chance of getting $35, the remaining part of the wheel is red. You will click a button to spin the needle. You will get $35 if the needle stops on the green part of the wheel, and you will get $0 if the needle stops on the red part of the wheel.

You may change your decisions as many times as you like. Your decisions are final as soon as you click the SAVE MY DECISIONS button. Once at least 10 seconds have passed and you have made all your decisions, this button will automatically appear on the bottom of your screen.
PART 3

This part of the experiment proceeds in 10 rounds. In each round, we will show you two boxes, Box X and Box Y. The computer will select a Box using the flip of a fair coin, and draw a ball randomly from that Box. We will not tell you the color of the ball yet.

In each round, we ask you to assess:

1. If the ball is BLACK, how likely it is that the ball was drawn from BOX X.
2. If the ball is WHITE, how likely it is that the ball was drawn from BOX Y.

After inspecting the boxes, you will fill in two lists such as these:
If this round is chosen for payment, the computer will draw a ball at random from the selected box. If the ball is BLACK, the computer will select a line at random from the first list, and carry out your stated choice. If the ball is WHITE, the computer will select a line at random from the second list, and carry out your stated choice.

All the numbers that you see in this part of the instructions are chosen to illustrate the payment procedure. These numbers will not be relevant once we start this part of the experiment.

For instance, suppose the ball is White. Also suppose that the computer selects the fourth line from the bottom of the second list. If you chose the option “get $35 if the Selected Box is Box Y”, then you will receive $35 if and only if the selected box is Box Y. If you chose the option “get $35 with chance 10%”, then you will receive $35 with chance 10%.

How should you decide which options to tick? That depends on how likely you think that, given the drawn ball is white, the Selected Box is Box Y. Suppose you think there is a 63% chance of this. Then you should tick the LEFT option on any line where the RIGHT option offers you a smaller than 63% chance of a cash prize. And you should tick the RIGHT option on any line where the RIGHT option offers you a greater than 63% chance of a cash prize.

Suppose you instead ticked the Left Option for all chances less than 90%, and the Right Option for all chances greater than 90%. If the computer selects one of the lines between 63% and 90%, then you will be given the Left Option (which you believe yields a payment 63% of the time) instead of the Right Option, which yields a payment more than 63% of the time!

Suppose instead you ticked the left option for all chances less than 30%, and the right option for all chances greater than 30%. If the computer selects one of the lines between 30% and 63%,
then you will be given the Right Option (which yields a payment less than 63% of the time), instead of the Left Option, which you believe yields a payment 63% of the time!

Thus, our payment procedure is designed so that your earnings are highest if you provide your most accurate estimate.

The box letters and ball colors that we are asking about will change from round to round.

The flow chart below illustrates what happens in one round.

1. Computer flips a fair coin.
2. If Box X is selected:
 - Computer draws a ball at random from Box X
 - Black Ball?
 - Computer picks a random line from the “If Black” list
 - Your choice from that line is carried out.
 - White Ball?
 - Computer picks a random line from the “If White” list
 - Your choice from that line is carried out.
3. If Box Y is selected:
 - Computer draws a ball at random from Box Y
 - Black Ball?
 - Computer picks a random line from the “If Black” list
 - Your choice from that line is carried out.
 - White Ball?
 - Computer picks a random line from the “If White” list
 - Your choice from that line is carried out.
PART 4

This part of the experiment proceeds in 10 rounds. In each round, we will show you two boxes, Box X and Box Y. The computer will select a Box using the flip of a fair coin, and draw a ball randomly from that Box.

In this part of the experiment, we ask you to assess how likely it is that the drawn ball is Black or White. You will make a choice by filling in a list such as this:

get 35 if a black ball is drawn.			get 35 with chance 100%
get 35 if a black ball is drawn.			get 35 with chance 97%
get 35 if a black ball is drawn.			get 35 with chance 94%
get 35 if a black ball is drawn.			get 35 with chance 91%
get 35 if a black ball is drawn.			get 35 with chance 88%
get 35 if a black ball is drawn.			get 35 with chance 85%
get 35 if a black ball is drawn.			get 35 with chance 82%
get 35 if a black ball is drawn.			get 35 with chance 79%
get 35 if a black ball is drawn.			get 35 with chance 76%
get 35 if a black ball is drawn.			get 35 with chance 73%
get 35 if a black ball is drawn.			get 35 with chance 70%
get 35 if a black ball is drawn.			get 35 with chance 67%
get 35 if a black ball is drawn.			get 35 with chance 64%
get 35 if a black ball is drawn.			get 35 with chance 61%
get 35 if a black ball is drawn.			get 35 with chance 58%
get 35 if a black ball is drawn.			get 35 with chance 55%
get 35 if a black ball is drawn.			get 35 with chance 52%
get 35 if a black ball is drawn.			get 35 with chance 49%
get 35 if a black ball is drawn.			get 35 with chance 46%
get 35 if a black ball is drawn.			get 35 with chance 43%
get 35 if a black ball is drawn.			get 35 with chance 40%
get 35 if a black ball is drawn.			get 35 with chance 37%
get 35 if a black ball is drawn.			get 35 with chance 34%
get 35 if a black ball is drawn.			get 35 with chance 31%
get 35 if a black ball is drawn.			get 35 with chance 28%
get 35 if a black ball is drawn.			get 35 with chance 25%
get 35 if a black ball is drawn.			get 35 with chance 22%
get 35 if a black ball is drawn.			get 35 with chance 19%
get 35 if a black ball is drawn.			get 35 with chance 16%
get 35 if a black ball is drawn.			get 35 with chance 13%
get 35 if a black ball is drawn.			get 35 with chance 10%
get 35 if a black ball is drawn.			get 35 with chance 7%
get 35 if a black ball is drawn.			get 35 with chance 4%
get 35 if a black ball is drawn.			get 35 with chance 1%

As before, the computer will randomly select a line from the list, and carry out the choice that you made in that line.
All the numbers that you see in this part of the instructions are chosen to illustrate the payment procedure. These numbers will not be relevant once we start this part of the experiment.

How should you decide which options to tick? That depends how likely you think it is that the drawn ball is black. For instance, if you think that there is a 70% chance that the drawn ball is black, then you should tick the LEFT option on any line where the RIGHT option offers you less than a 70% chance of a cash prize, and you should tick the RIGHT option on any line where the RIGHT option offers you a greater than 70% chance of a cash prize.

You may change your decisions as many times as you like. Your decisions are final as soon as you click the SAVE MY DECISIONS button. Once at least 10 seconds have passed and you have made all your decisions, this button will automatically appear on the bottom of your screen.

Remember, our payment procedure is designed so that your earnings are highest if you provide your most accurate estimate.

The ball color that we are asking about will change from round to round.
PART 5

This part of the experiment proceeds in 4 blocks. Each block has 12 rounds. In each block, we will show you two boxes, Box X and Box Y. Each contains 20 balls.

For instance, Box X could contain 12 black balls and 8 white balls. Box Y could contain 12 white balls and 8 black balls.

At the start of each block, this is what will happen:
1. You will be shown the contents of the two boxes for the current block
2. The computer will select a Box by flipping a fair coin. This Box will remain the same for the entire block.

During the 12 rounds of a block, this is what will happen in each round:

1. The computer will draw a ball at random from the Selected Box and show it to you
2. You can then choose one of the following three options:

 - Receive $35 if Box X is the Selected Box.
 - Receive $35 with chance 90% if Box Y is the Selected Box.

3. The computer will put the ball back in the selected box.

Note that the Selected Box stays the same for the entire 12 rounds of the block. A new Selected Box will be drawn only at the beginning of each block.

Payment
If the computer chooses this part of the experiment for payment, here's what will happen. The computer randomly chooses a block, and a round within this block. The computer will then carry
out the choice you made in this round. That is, if you chose the option on the left, you will get $35.- if the Selected Box in this block was indeed Box X; if you chose the middle option, you will get $35.- with the specified chance; and if you chose the option on the right, you will get $35.- if the Selected Box was indeed Box Y.

Please note the following:

• The chance with which you can receive $35.- if you choose the middle option may vary from block to block. But it will stay the same for all 12 rounds within a block.
• A new Selected Box is drawn at the beginning of each block, and will stay the same for all 12 rounds within the block.
• After a ball has been drawn from the Selected Box, it is put back into the Selected Box. Hence, draws are with replacement.
Overview of part 5

BLOCK 1

You see the contents of Box X and Box Y

Computer draws the Selected Box.

Round 1 (i) Computer draws a ball from the Selected Box and shows it to you
(ii) You choose between the left, middle, or right options
(iii) Computer returns the ball to the Selected Box

Round 2 like round 1

...

Round 12 like round 1

BLOCK 2

You see the contents of Box X and Box Y

Computer draws the Selected Box.

Round 1 (i) Computer draws a ball from the Selected Box and shows it to you
(ii) You choose between the left, middle, or right options
(iii) Computer returns the ball to the Selected Box

Round 2 like round 1

...

Round 12 like round 1

BLOCK 3

like block 2

BLOCK 4

like block 2
QUESTIONNAIRE

Thank you for participating in the experiment! We would like to ask you a few questions about yourself.

At the end of the questionnaire, the computer will randomly select a round, and a decision that you made in that round. We will pay you in cash for that decision.

If the decision selected was from Part 2, and you chose to play the Prediction Game, then you will play a final round of the Prediction Game, with the relevant boxes displayed. This will be for a cash prize of $35.